

WCCI/GECCO 2020 Competition
Evolutionary Computation in Uncertain

Environments: A Smart Grid Application

João Soares1, Fernando Lezama1, Bruno Canizes1, Zita Vale1

1School of engineering (ISEP), Polytechnic of Porto, Porto, Portugal
jan@isep.ipp.pt, flz@isep.ipp.pt, brmrc@isep.ipp.pt, zav@isep.ipp.pt

IEEE CIS Task Force on 'Computational Intelligence in the Energy Domain (ci4energy), part of
IEEE CIS Intelligent Systems Applications TC (http://ci4energy.uni-paderborn.de/committee/)

IEEE PES Intelligent Systems Subcommittee (ISS), part of IEEE PES Analytic Methods for Power

Systems TC (http://sites.ieee.org/pes-iss/)

December 2019

2

Table of contents

1. Introduction .. 3

2. General description of the smart grid applications ... 4

2.1 Testbed 1 .. 4

2.2 Testbed 2 .. 5

3. Metaheuristic simulator framework ... 5

3.A) Encoding of the individual ... 6

3.B) Fitness function .. 8

3.C) Some assumptions: .. 10

3.D) Some notes on the implementation: ... 10

3.E) Scenario overview .. 10

4. Guidelines for participants .. 13

4.A) mainWCCI_SG_2020.m - Master function/script ... 13

A.0 and A.1 - # mainWCCI_SG_2020.m - Loading the testbed and case study 13

A.2 - #DEparameters.m - Set parameters of the metaheuristic .. 14

A.3 - #setOtherParameters.m - Set other necessary parameters and struct 14

A.4 - #setVariablesBounds.m - Set bounds of variables .. 14

A.5 - #deopt_simple.m - Algorithm proposed by the competitor .. 15

A.6 - #Save_results.m - Benchmark results (text-files) .. 15

4.B) Fitness function evaluation .. 16

B1. Best solution .. 17

5. Evaluation guidelines .. 18

6. Material to be submitted to the organizers .. 18

Appendix: Mathematical formulation of testbed 1 .. 19

A) Objective function .. 19

B) Constraints of the problem ... 19

C) Uncertainty representation .. 20

Nomenclature ... 20

Bibliography .. 21

3

1. Introduction
Following the success of the previous editions at WCCI 2018 and CEC 20191 we are launching a more
challenging competition at major conferences in the field of computational intelligence. This WCCI 2020
competition proposes two test beds in the energy domain:

Testbed 1) optimization of a centralized day-ahead energy resource management problem in smart grids
under environments with uncertainty. This test bed is similar to the past challenge using a challenging
500-scenario case study with high degree of uncertainty. We also add some restrictions to the initialization
of initial solution and the allowed repairs and tweak-heuristics.

Testbed 2) bi-level optimization of end-users’ bidding strategies in local energy markets (LM). This test
bed is constructed under the same framework of the past competitions (therefore, former competitors
can adapt their algorithms to this new testbed) , representing a complex bi-level problem in which
competitive agents in the upper-level try to maximize their profits, modifying and depending on the price
determined in the lower-level problem (i.e., the clearing price in the LM), thus resulting in a strong
interdependence of their decisions.

The proposed testbeds are developed under the same framework of the past competitions with a number
of adjustments.

1 Check former competitions in http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/ and
http://www.gecad.isep.ipp.pt/ERM2019-Competition

4

2. General description of the smart grid applications

2.1 Testbed 1

The problem of Testbed 1 considers an energy aggregator with aims of procuring energy needs from distributed
resources and the electricity market. The aggregator looks for the minimization of operational costs while making
revenues from selling energy in available electricity markets. Moreover, it may use its own assets, e.g., energy storage
systems (ESS), to supply the load demand. In addition, a V2G feature that allows the use of energy in the battery of
electric vehicles (EV), is also possible. The energy aggregator establishes bilateral energy contracts with those who
seek electricity supply, e.g., residential and industry customers. In this case, it is assumed that the aggregator does
not make profits from the supply of energy to fixed loads and EVs charging. The main idea is that the optimization
software can perform the energy resource scheduling of the dedicated resources in the day-ahead context for the 24
hours of the following day.

Figure 1 Overview of the aggregator energy management problem

Since the aggregator performs the scheduling of resources for the day-ahead (i.e., the next 24 hours), it relays in the
forecast of weather conditions (to predict renewable generation), load demand, EV trips, and market prices. However,
the assumption of “perfect” or “highly accurate” forecast might bring catastrophic consequences into the operation
of the grid when the realizations do not follow the expected predictions.

Due to this situation, it is desired that the aggregator determines solutions that are robust to the uncertainty inherent
in some parameters and the environment. Four aspects of uncertainty that affects the performance of a solution are
considered in this competition, namely: a) Weather conditions, b) Load forecast, c) Planned EVs’ trips, and d) Market
prices.

Therefore, the aggregator should find solutions that provide not only an optimal (or near-optimal) value of
operational costs but also those solutions must have the characteristic of being as less sensible as possible to the
variations of the uncertain parameters. In [1], uncertainty in evolutionary computation is classified into four
categories, namely noise, robustness, fitness approximation and time-varying fitness functions. This competition lays
in the category of robustness, in which the design variables (or environmental parameters in this particular case) are
subject to perturbations or changes after the optimal solution has been determined (i.e., the realizations of uncertain
parameters).

To incorporate the uncertainty of parameters, we use Monte Carlo simulation (MCS) to generate a large number of
possible scenarios using probability distribution functions of the forecast errors (obtained from historical data). A high
number of scenarios increases the accuracy of the model but comes with a computations cost associated with a large
number of variations in the parameters. Due to this, a reduction technique [2] is used to maintain a reasonably small
number of scenarios while keeping the main statistical characteristics of the initial scenarios’ set..

5

2.2 Testbed 2
We consider a day-ahead LM bidding optimization problem, in which agents submit bids/offers to maximize their
profits (or equivalently minimize their costs). We assume that agents of the type consumers only, small producers,
and prosumers (i.e., consumers with generation capabilities) coexist in this Local Market (LM). Also, agents have
access to the main grid, which works as a back-up system. Therefore, as in [3], agents can trade energy in the LM with
prices between the feed-in tariff cF	and the grid electricity tariff cG. In fact, it is assumed that cF<cG and therefore
buy/sell energy from the grid is less beneficial to agents than transacting energy in the LM. Figure 2 illustrates the local
market scenario.

Figure 2 Considered Local Market and the grid as a back-up system

The LM bidding optimization problem can be modeled as a bi-level optimization problem. The upper-level
corresponds to the maximization of agents' profits, and the lower-level problem corresponds to the maximization of
energy transacted in the LM. Therefore, the solution of the lower-level (after determining the clearing price) affects
the upper-level by modifying the profits of all agents.

Consider a set of consumer agents i= {1,2,...N_c}, and producer agents j= {1,2,...N_p}, where each agent i wants to
minimize its costs while agents j want to maximize their profits. The upper problem, therefore, is a multi-objective
problem in which each agent wants to maximize/minimize their profits/costs.

The full formulation of the problem is available in the publication [4].

3. Metaheuristic simulator framework
In this competition, the method of choice used by the participants to solve the problem must be a metaheuristic-
based algorithm (e.g. Differential Evolution, Particle Swarm Optimization, Vortex Search, etc.). The framework
adopted in the competition is described in this document and follows the structure presented in Figure 3.

6

Figure 3 General framework of the simulation platform

The simulation platform has been implemented in MATLAB© 2016 64-bit and consists of different scripts with specific
targets in the simulation. As shown in Figure 3, some scripts correspond to encrypted files provided by the organizers
(blue color in the figure). The user only needs to implement two scripts (see Sect. 4.A.2 and Sect. 4.A.6), namely:

i. one script for setting the parameters required by their algorithm (A.2).
ii. a second script for the implementation of their proposed solution method (A.6).

Examples of how to implement these two script functions, and how the organizer’s scripts work on the platform, are
provided in Sect. 4.

Before of the guidelines for participants, we provide additional information on the encoding of the solutions,
assumptions and some notes on the implementation of the problem below.

A maximum number of 50,000 evaluations is allowed in the competition for each testbed. Take into account that it is
not the same as algorithm iterations, and that each time the fitness function is evaluated.

3.A) Encoding of the individual
The solution structure (e.g., an individual in DE, a particle in PSO, or genotype in GA) is a fundamental part of the
metaheuristics to represent a given solution. The solution representation adopted in this competition follows the
vector representation showed in Figure 4. The initial solutions in this edition of the competition should be initialized
randomly between the upper and lower bounds of the variables. Heuristics and special tweaks are not allowed.

A. MainWCCI_2020.m (main Function)

Load case study
(Encrypted)

Set algorithm parameters
(by the USER)

Set other parameters
(Encrypted)

Set variable bounds
(Encrypted)

Main algorithm optimization
(by the USER)

Save results
(encrypted)F

u
nc
t
i
o
n
s

d
e
f
i
ne
d

(
a
n
d

e
n
c
ry
p
t
e
d
)

b
y

t
he

o
r
g
a
n
i
z
e
rs

F
un
c
t
i
o
n
s

d
e
f
in
e
d

b
y

t
h
e

co
m
p
e
t
i
t
o
r
s

A.1

A.2

A.3

A.4

A.5

A.6

Select testbedA.0

7

Testbed 1

Figure 4 Solution representation in testbed 1

Each solution is encoded, therefore, as a vector with ‘6’ groups of variables that are repeated sequentially across the
24 periods (hours) of optimization. In the vector representation, all variables, apart from group (2), are continuous
variables with bounds matching the power or capacity limits of the associated variables. Group (2), generator binaries,
corresponds to binary variables that are used to indicate if a generator is connected (‘1’ value) or disconnected (‘0’
value). Binary variables might also present a continuous value since the fitness function internally corrects their value
using a simple round operation.

A special attention is pointed to group (1). That group belongs to variables of distributed generation (DGs). It is
important to notice that DGs include not only dispatchable generators but also PV generation. However, PV
generation cannot be controlled, so even when it is part of the vector solution, the variables corresponding to PV
generation (variables of group (1)) will take a specific, and thus unalterable, value depending on the considered
scenario.

Testbed 2

The optimization problem, seen as a whole, searches for the optimal bidding of agents in the LM to maximize their

profits. Therefore, assuming we have K = {1,2,...Nk}1, we seek to determine the best tuple (qk , pk)∀k ∈ K representing
the optimal price and quantity to bid in the LM for each agent. The bidding also should be done for all t ∈ T periods
of the optimization process (i.e., T = 24 periods in the day-ahead market). Therefore, we define a vector ⃗x = {[qk,t] ∪
[pk,t]} including the bids for quantity and price the kth agent will send to the LM. To avoid separating the agents by
consumer and producer types, we use a sign convention in which a positive quantity represents a bid (i.e., buying in
the market), while a negative quantity represents an offer (i.e., selling in the LM). Therefore, we can control the agent
action by defining variable bounds in which a consumer agent can send bids in the market within the bounds [0, Lmax
] (i.e., between 0 and their maximum consumption), while producer agents can send offers within the bounds [−Pmax
, 0] (i.e., between 0 and their maximum production capacity). The bounds for prices are the same for all agents and

within the range [cF , cG]. Figure 5 illustrates the structure of solutions to understand how the individual is encoded.

8

Figure 5 Solution representation in testbed 2

3.B) Fitness function
A maximum number of 50,000 function evaluations is allowed in the competition in each testbed.

Testbed 1

The fitness function 𝑓′ considers the objective 𝑍 of the aggregator (see Appendix section, Eq. (10)), plus the
summation of the penalties found during evaluation of the solutions:

𝑓′(𝑋⃗) = 𝑍 + 𝜌.max	[0, 𝑔7]
9:

7;<

	

	

(1)

where 𝑋⃗ is a solution that follows the structure showed in Figure 4. In this case, 𝑔7 is the value of the 𝑖th constraint
(equality or inequality) and 𝜌 is a configurable penalty factor (usually, a high value is considered). See sect. 4.B for
instructions regarding fitness function and how penalties work.

In this competition, we consider uncertainty in some parameters that modify the value of the fitness function
according to different scenarios generated by Monte Carlo simulation. The fitness function value is modifying by
perturbation as follows:

𝐹?(𝑋⃗) = 𝑓′(𝑋⃗ + 𝛿?)

(2)

where 𝛿? is the disturbance of variables and parameters in scenario 𝑠, and 𝐹?(𝑋⃗) is the fitness value associated to
the	𝑠 Monte Carlo sampling. Therefore, an expected mean value for a given solution over the set of considered
scenarios can be calculated as:

𝜇𝐹𝑆(𝑋⃗) =
1
𝑁?
∙.𝑓′(𝑋⃗ + 𝛿?)
9G

?;<

(3)

Similarly, the standard deviation of a solution over the set of scenarios can be calculated as:

𝜎𝐹𝑆(𝑋⃗) = I 1
𝑁?
∙.J𝑓KJ𝑋⃗ + 𝛿?L − 𝜇𝐹𝑆(𝑋⃗)L

N
9G

?;<

(4)

Eqs. (3) and (4) depends on the number of scenarios considered in the evaluation. As we will show below, the fitness
function in the optimization process receive as a parameter the number of scenarios that the competitor wants to

9

evaluate. However, keep in mind that for the final evaluation (See Sect. 5), the solutions will be evaluated through
the total number of scenarios (500 for the competition).

Figure 6 shows a schematic representation of the fitness function. We developed the fitness function as a black box
as shown in Figure 6(a) (it is an encrypted function) that receives as input arguments an array with the solutions, the
information of the case study, some additional parameters, and the number of scenarios that the user wants to
evaluate (a maximum of 500 scenarios is considered). The function returns an array with the fitness values of the
entire population over a randomly selected subset of scenarios (see sect. 5.B for details on the implementation of
this function).

Figure 6(b) shows the internal operation of the fitness function, which randomly selects 𝑁OPQRS scenarios (𝑁OPQRS is a
parameter not specified by the user. It is set to a default value of 10 and cannot be changed) from the 𝑁? available
ones. Notice from Figure 6(b) that the actual number of function’s evaluations depends on the size of the population
to evaluate, and the number of scenarios that the user wants to consider each time that the fitness function is called.
The number of functions evaluations is therefore:

𝑁𝐹𝐸 = 𝑁?UR ∗ 𝑁OPQRS

(5)

Recall that a maximum number of 50,000 function evaluations is allowed in the competition.

(a)

(b)

Figure 6 Fitness function. a) Black box. b) Internall functioning.

Testbed 2

Solutions in testbed 2 should be evaluated in an objective function that returns the mean average profit of all agents
plus the standard deviation:

𝑓′(𝑋⃗) = 𝑚𝑒𝑎𝑛(𝑝𝑟𝑜𝑓𝑖𝑡𝑠) + 𝑠𝑡𝑑(𝑝𝑟𝑜𝑓𝑖𝑡𝑠)

(6)

Fitness Function
Black Box

fitnessFun_DER_WCCI

Solutions

CaseStudyData

otherParameters

No.Scenarios to eval

Output

solFitness_M

Sol_Penalties_M

otherParameters

Fitness Function
Black Box Scenario 1

Scenario 2

Scenario 3

Scenario Ns

Input:
Solutions
matrix

Randomly
select

N scenarios

Scenario 4

Fitness
evalutaion

Output:
Fitness
Matrix
Size
NPxselected
scenarios

Fitness
evalutaion

Fitness
evalutaion

Fitness
evalutaion

Fitness
evalutaion

10

where mean(Profits) and std(Profits) are functions that compute the average and standard deviation (respectively) of
the profits that all agents obtained considering the bids/offers encoded in the individual. The negative sign in the first
term is used to transform the profits maximization problem into a minimization one. The less the value in Eq. (6), the
better the mean profits achieved by all agents. The fitness function in testbed 2 acts as a black box as Figure 6.

3.C) Some assumptions:
Testbed 1

1. The aggregator minimizes operational costs while maximize its profits (costs minus income)
2. Electric vehicles can be controlled continuously (between 0 and max charge rate)
3. The same assumption applies to the V2G principle (between 0 and max discharge rate)
4. The stationary batteries or Energy Storage Systems (ESS) can be controlled continuously similar to the EVs/V2G
5. The cost function of DG units is assumed to be linear
6. It is assumed that the energy aggregator can submit bids and asks to the electricity market.
7. The markets in which the aggregator participates have different limits for bid and asks
8. Two markets are considered corresponding to wholesale and local markets
9. 5000 reduced to 500 scenarios are generated to simulate uncertainty of EVs travels, PV generation, load

variations, and market prices

3.D) Some notes on the implementation:
Testbed 1

1. Internally in the fitness function, it is assumed that the charge/discharge variables for the EVs are the same, but
positive values for charge and negative values for discharge to save computational memory

2. The same principle described above for EV applies for the ESS variables
3. Internally, the market value is positive for an offer (sale) and negative for a buy bid
4. Binary variables are always rounded internally in the objective function
5. Direct repair of solution is used in the fitness function (see section 0)
6. The fitness function internally selects a random subset of the available 500 scenarios each time the function is

called.

3.E) Scenario overview
Testbed 1

This section briefly describes the case study prepared for the competition, which is based on a 25-bus microgrid that
represents a residential area with 6 DGs (5 dispatchable units and 1 PV generator), 1 external supplier, 2 ESSs, 34 EVs,
and 90 loads with demand response capability. Moreover, it is considered that two markets (wholesale and local) are
available for buy/sale of energy. Table 1 outlines the resources available in the MG.

Table 1. Available Energy Resources

Energy resources Prices (m.u./kWh) Capacity (kW) Units
Dispatchable DGs 0.07-0.11 10-100 5
External suppliers 0.074-0.16 0-150 1

ESS
Charge - 0-16.6

2 Discharge 0.03 0-16.6

EV
Charge - 0-111

34 Discharge 0.06 0-111
DR curtailable loads 0.0375 4.06-8.95 90

Forecast (kW)
Photovoltaic - 0-106.81 1 (17 agg)
Load - 35.82-83.39 90

Limits (kW)

11

Market 1 (WS) 0.021-0.039 0-100 1
Market 2 (LM) 0.021-0.039 0-10 1

Uncertainty (generation of scenarios)

For the competition, we created 5000 scenarios for PV generation, load consumption and market price variations. For
the PV uncertainty generation, an error of 15% was used. Regarding the load forecasted and market prices, errors of
10% and 20% were used respectively. In a second step, the number of scenarios was reduced to 500 using specialized
reduction techniques [5]. Regarding EVs trips, we have randomly generated 500 different forecast scheduling for each
scenario using the tools in [6]. Figure 7 shows graphically the generated scenarios.

(a)

(b)

(c)

(d)

Figure 7 Fitness function. a) PV generation. b) Load forecast. c) Wholesale market. d) Local market.

Testbed 2

We adopt a case study with nine agents, in which 3 of them are consumers, 3 are prosumers (i.e., consumers with PV
generation capabilities), and 3 are CHP generators. To generate case study data, sample power profiles of residential
houses and PV systems are built using the open datasets available in PES ISS website2. We build three standard house
power profiles and a PV power profile (see Figure 8). With these profiles, we generate agent data using a randomized
function with uniform distribution, 20% around the standard profiles. Figure 8 also provides the power ranges of the
base profiles. We consider generator agents corresponding to CHPs with a maximum generation capacity of 2kW and
a marginal cost calculated using the equation provided in [4] with a factor of b_CHP=0.18 EUR/kWh. Finally, feed-in
and grid tariffs are set to CF=0.12$ and CG=0.28 EUR/kWh as in [4].

2 Open data online at http://sites.ieee.org/pes-iss/data-sets/

12

Figure 8 Profiles used in the case study. Ranges of power (in kW): house 1 [0.18-0.48], house 2 [0.06-2.50], house 3 [0.07-
0.36], PV (house) [0-1].

13

4. Guidelines for participants
These instructions include as example the metaheuristic differential evolution (DE) [7] implemented and adapted to
the present framework (It has been modified by GECAD).

It is important that the participants use the following recommendations and structure to avoid issues in using the
supplied datasets and codes.

4.A) mainWCCI_SG_2020.m - Master function/script
mainWCCI_SG_2020.m is the main file for the competition. The competitors can modify this main script as needed.
Nevertheless, it is worth noting that this main script is ready to use. Participants should only include their functions
to perform the optimization of the problem.

mainWCCI_SG_2020.m
……
%%
%% Select testbed
Select_testbed=1;
%Testbed 1: Energy resource management with uncertainty
%Testbed 2: Optimal bidding in local energy markets
DB=Select_testbed;
% 1: Case study testbed 1
% 2: Case study testbed 2
[caseStudyData, DB_name]=callDatabase(DB);
Select_Algorithm=1;
%1: DE algorithm (test algorithm)
%2: Your algorithm
algorithm='DE-rand'; %'The participants should include their algorithm here'
DEparameters %Function defined by the participant
No_solutions=deParameters.I_NP; % %Notice that some algorithms are limited to one
individual
%%%
%% Set other parameters
otherParameters =setOtherParameters(caseStudyData,No_solutions, Select_testbed);

%%%
%% Set lower/upper bounds of variables
[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters);

%%%
%% Call the MH for optimization
ResDB=struc([]);
 for iRuns=1:noRuns %Number of trails
 tOpt=tic;
 rand('state',sum(noRuns*100*clock))% ensure stochastic indpt trials

 otherParameters.iRuns=iRuns;
 switch Select_Algorithm
 case 1
 [ResDB(iRuns).Fit_and_p, ...
 ResDB(iRuns).sol, ...
 ResDB(iRuns).fitVector]= ...
deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB);
….
 end

 %%%
 %% Save the results and stats
 Save_results

…..

As it can be seen, the main script follows the structure from Figure 3 (Sect. 3). Details in the implementation of each
part of the code are given next.

A.0 and A.1 - # mainWCCI_SG_2020.m - Loading the testbed and case study
mainWCCI_SG_2020.m – This is the main framework file where you can select the testbed (either 1 or 2), which
will load the caseStudyData struct (callDatabase.p – encrypted) with all the relevant dataset information depending
on the selected testbed. Participants do not need to worry about the content of the case study and loading the files.

A.6
A.4

A.3
A.2

A.0
A.5

A.1

14

%%
Select_testbed=1;
%Testbed 1: Energy resource management with uncertainty
%Testbed 2: Optimal bidding in local energy markets
%% Load Data base
noRuns=20; %this can be changed but final results should be based on 20 trials
DB=Select_testbed;
% 1: Case study testbed 1
% 2: Case study testbed 2
[caseStudyData, DB_name]=callDatabase(DB);

A.2 - #DEparameters.m - Set parameters of the metaheuristic
DEparameters.m file – This function file must be specific to the metaheuristic implemented by the participant. This
is just an example using DE to show how participants should implement this function with all the parameters related
to their algorithm.

deParameters.I_NP= 12; % Size of the population in DE
deParameters.F_weight= 0.3; %Mutation factor
deParameters.F_CR= 0.5; %Recombination constant
deParameters.I_itermax= 100; % number of max iterations/gen
deParameters.I_strategy = 1; %DE strategy

deParameters.I_bnd_constr = 1; %Using bound constraints
% 1 repair to the lower or upper violated bound
% 2 rand value in the allowed range
% 3 bounce back

A.3 - #setOtherParameters.m - Set other necessary parameters and struct
setOtherParameters.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It
just sets parameters and data needed for the fitness function to work. Please take into account a third parameter is
added to the previous framework to consider another testbed. It is a mandatory function that creates a struct
“otherParameters” and should be run as illustrated in main function section:

%% Set other parameters
otherParameters =setOtherParameters(caseStudyData,No_solutions, Select_testbed);

Participants must pass the “otherParameters” struct as argument to the functions:

[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters,
Select_testbed);
…..
[ResDB(iRuns).Fit_and_p, ...
 ResDB(iRuns).sol, ...
 ResDB(iRuns).fitVector]= ...
deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB);

A.4 - #setVariablesBounds.m - Set bounds of variables
setVariablesBounds.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It
just sets the bounds of the problem variables. Please take into account a third parameter is added to the previous
framework to consider another testbed.

%% Set lower/upper bounds of variables
[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters,
Select_testbed);

The outputs of this function “[lowerBounds,upperBounds]” – should be used by your algorithm to generate the initial
solutions and to validate if the bounds are being respected in each iteration.

The order of the variables in the implemented codes cannot be modify for the proper functioning of the fitness
function. The structure of the solution is indicated in Sect. 3.A of this document

15

The following parameters are used to identify the ids of each type of variables (Example of testbed 1 – only works for
testbed 1). These “ids” are used to locate the type of variables in the solutions matrix (ids correspond to the columns
while individuals to the rows).

otherParameters.ids.idsGen
otherParameters.ids.idsXGen
otherParameters.ids.idsV2G
otherParameters.ids.idsLoadDR
otherParameters.ids.idsStorage
otherParameters.ids.idsMarket

Example of use testbed 1:
periods = caseStudyData.parameterData.numPeriods;
nParticles = size(solutions,1); %Number of population (solutions)
nVariables = size(solutions,2); %Number of variables (dimension)
idsV2G= otherParameters.ids.idsV2G;
getPeriod = 2; % Period 2 used to illustrate this example
tempIds=idsV2G+(nVariables/periods)*(getPeriod-1);
solutions(:,tempIds) % EVs variables for period 2, all individuals
solutions(2,tempIds) % EVs variables for period 2, second individual
A.5 - #deopt_simple.m - Algorithm proposed by the competitor
The participants should generate a scrip called #MHalgorithm.m or similar. This algorithm should replace
#deopt_simple.m which is provided as example:

[ResDB(iRuns).Fit_and_p, ...
 ResDB(iRuns).sol, ...
 ResDB(iRuns).fitVector]= ...
deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB);

Your metaheuristic should receive as input parameters:

1. deParameters: struct with the parameters configuration for your algorithm to work (it is generated by the user)
2. caseStudyData: struct with the information of the case study
3. otherParameters: struct with additional information required by the fitness function
4. lowerB/upperB: lower and upper bounds of variables

Your metaheuristic code should return to the main script the following variables:

1. ResDB(iRuns).fit_and_p: array of size 1x2 with the best fitness and penalties values
2. ResDB(iRuns).sol: vector of size: 1 x noVariables with the best candidate solution found by your algorithm
3. ResDB(iRuns).fitVector: array of size: 2xnoIterations with the value of the fitness and penalties over the

iterations.

The participants are encouraged to save the results of each trial/run in a struct “ResDB”, as shown in the example.
That will ease the evaluation process by the organizers.

A.6 - #Save_results.m - Benchmark results (text-files)
#Save_results.m (encrypted) – The output is written to text-files using this script. The following tables should be
produced:

Table 1. Table_Time: Computing time spent for all optimization trials (benchmark_Time.txt)

 timeSpent (s)
Run1
Run2
Run3

…
Run20

Table 2. Table_Fit: Individual benchmark of the trials (benchmark_Fitness.txt)

 AvgFit StdFit MinFit MaxFit varFit ConvergenceRate Penalties
Run1
Run2
Run3

16

…
Run20

Table 3. Table_TrialStats: Summary statistics or the trials (benchmark_Summary.txt)
Ranking

Index Average Standard
deviation Minimum Maximum Variance Code

RankingIndex PAvgFit PstdFit PminFit PmaxFit PvarFit validationCode

In addition, this function should automatically generate the file “Send2Organizer.mat”, which should include
the best solutions found in each of the trials. That file will be used to double-check the reported results by validating
all the solutions contained there over the 500 scenarios of the case study (testbed 1) and one scenario in testbed 2.
For that reason, it is important that the participants put special care in returning the best solutions from their
algorithms and stored in “ResDB.sol” (see Sect. 4.A.6).

To clarify, the “Send2Organizer.mat” file will include a matrix called “solutions” with the solutions stored in
“ResDB.sol”. The solutions there will be evaluated according to Sect. 5 in order to double check the ranking
index of each participant. The lower the ranking index, the better the performance of a participant.

*A number 20 trials should be made.
*50,000 evaluations per trial should be made.

4.B) Fitness function evaluation
fitnessFun_DER_WCCI.m and #fitnessFun_WCCI2020.m (encrypted) – this is the fitness function to be used by
participants and should be called as below. The “fnc” parameter will be assigned automatically to load the
corresponding fitness function according to the selected testbed Sect. 4.A.0.

[S_val, ~]=feval(fnc,FM_pop,caseStudyData,otherParameters);

The function receives as input:

1. fnc: string with the fitness function m file name: and “fitnessFun_DER_WCCI.m” for testbed 1 and
“#fitnessFun_WCCI2020.m” for testbed 2.

2. FM_pop: matrix of size 𝑁?UR × 𝐷, in which 𝑁?UR (rows) represents the number of individuals/solutions in an array,
and 𝐷 (columns) represents the dimension (i.e., number of variables) of the optimization problem. This variable
should be encoded in the metaheuristic algorithm proposed by participants (e.g., #MHalgorithm.m, Sect. 4.A.5).
Only 1 individual is also possible (one row).

3. caseStudyData: struct with data of the case study with all the scenarios as loaded by callDatabase function (i.e.,
#callDatabase.m, Sect. 4.A.1).

4. otherParameters: Struct with additional information as loaded by #setOtherParameters.m Sect. 4.A.3).

The function returns as output:

1. 𝐒_𝐯𝐚𝐥: Matrix of size 𝑁?UR	represents the number of individuals. This matrix includes the fitness values including
penalties of the solutions across different scenarios.

The #fitnessFun evaluates all the population (individuals) at once. A maximum number of 50,000 function evaluations
is allowed in the competition in each testbed. The table below helps the participant to have an idea of the maximum
number of iterations and population It can set without surpassing the allowed number of evals. So, take it account
when designing your algorithm:

Table 1. Algorithm population/iterations limits

Size of the population Max. iterations Testbed 1 Max. iterations Testbed 2
1 5000 50000
5 1000 10000

20 250 2500
50 100 1000

100 50 500
1000 5 50

17

B1. Best solution
Since #fitnessFun returns a single value associated to an individual, but the evaluation of individuals across scenarios,
the participants should select a criterion to determine which is the best individual in their population, or how they
want to perform the search. The criteria for selecting the best individual could vary from worst-case performance,
mean fitness value, best fitness value, etcetera. Here, we provide an example of selecting the best individual based
on the worst-case performance:

[solFitness_M, solPenalties_M,Struct_Eval]=
fitnessFun_DER_WCCI(solutions,caseStudyData,otherParameters);

%%
%%
% The user should decide which is the best criterion to optimize.
% In this example, we optimize worst-case performance
[S_val, worstS]=max(solFitness_M,[],2); %Find worst-case performance
[~,I_best_index] = min(S_val); %Select the best amount the worst-case performances

FVr_bestmemit = FM_pop(I_best_index,:); % best member of current iteration

18

5. Evaluation guidelines
A ranking index will be calculated using the 20 final solutions (one for each trial) provided by each participant in each
testbed 1 and 2 (T1 and T2). With these solutions, the organizers will calculate the ranking index (𝑅𝐼j?Ok) for each
participant 𝑎 based on the average fitness and standard deviation of each solution across the 500 scenarios in testbed
1 and the average fitness in testbed 2. The values 𝑅𝐼j?Ok(Q)_l< and 𝑅𝐼j?Ok(Q)_lN will then be normalized and a final
ranking will be produced.

𝑅𝐼j?Ok(Q)_l< =
1

𝑁mk7QR?
∙ n . J𝜇𝐹𝑆Q(𝑋⃗7_𝑇1) + 𝜎𝐹𝑆Q(𝑋⃗7_𝑇1)L
9_mk7QR?

7;<

p
(7)

where 𝜇𝐹𝑆Q(𝑋⃗7_𝑇1) and 𝜎𝐹𝑆Q(𝑋⃗7_𝑇1) are functions that return the average value and standard deviation of the
solution found in trial 𝑖 (i.e., 𝑋⃗7) by participant 𝑎 across the 500 considered scenarios (See Sect. 3.B).

𝑅𝐼j?Ok(Q)_lN =
1

𝑁mk7QR?
∙ n . J𝜇𝐹𝑆Q(𝑋⃗7_𝑇2)L
9_mk7QR?

7;<

p
(8)

𝑅𝐼j?Ok(Q)_rs9tu =
1

𝑁𝑜𝑟𝑚(𝑅𝐼j?Ok(Q)_l<)
+

1
𝑁𝑜𝑟𝑚(𝑅𝐼j?Ok(Q)_lN)

 (9)

Therefore, the winner of the competition will be the one that gets the maximum value of 𝑅𝐼j?Ok. The
participants must consider this criterion while selecting the best search strategy in their algorithms. With
this performance measurement, we are considering not only the best mean expected value, but also the
robustness of the solution.

6. Material to be submitted to the organizers
For the validation of the results, the 3 benchmark text files and the “Send2Organizer.mat” file produced by
Save_results.m (see Sect. 4.A.6) should be submitted to the organizers. The implementation codes of each
algorithm entering the competition must also be submitted along with final results for full consideration in the
evaluation. The submitted codes will be used for further tests, which are intended to crosscheck the submitted
results. The submitted codes will be in the public domain and no intellectual property claims should be made.

Each participant is kindly requested to put the text files corresponding to final results, as well as the implementation
files (codes), obtained by using a specific optimizer, into a zipped folder named:

WCCI2020_testbedX_AlgorithmName_ParticipantName.zip
(e.g. WCCI2020_testbed2_DE_Lezama.zip).

The zipped folder must be summited to jan@isep.ipp.pt; flz@isep.ipp.pt and
brmrc@isep.ipp.pt

by 31th May 2020

19

Appendix: Mathematical formulation of testbed 1
We divide this section in three parts for better understanding: A) Objective function, B) Constraints of the problem,
and C) Uncertainty modelling.

A) Objective function
The envisaged problem can be modelled as a combinatorial Mixed-Integer Linear Programming (MILP) problem due
to the presence of a high number of continuous, discrete and binary variables. The objective of the aggregator is to
minimize operational costs (𝑂𝐶) while maximizing incomes (𝐼𝑛). This can be rewritten as minimization function Z:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑍 = 𝑂𝐶 − 𝐼𝑛 (10)

The minimum value of 𝑍 is the total cost (or profits if negative) for the energy aggregator. Therefore, the goal in
optimization terms is to obtain the minimum value of 𝑍 in the metaheuristics form.

The aggregator looks for the minimization of the operational costs (𝑂𝐶) associated with the management of resources
as follows:

𝑂𝐶 =

..𝑃z{(7,m) ∙ 𝐶z{(7,m)

9|}

7;<

l

m;<

+..𝑃O~m(�,m) ∙ 𝐶O~m(�,m)

9�

�;<

l

m;<

..

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛ . 𝑷𝑷𝑽(𝒋,𝒕,𝒔) ∙ 𝐶��(�,m)

9���|}

�;<

+.𝑷𝑬𝑺𝑺�(𝒆,𝒕,𝒔) ∙ 𝐶�SS�(O,m)

9�

O;<

.𝑷𝑬𝑽�(𝒗,𝒕,𝒔) ∙ 𝐶���(P,m)

9�

P;<

+.𝑷𝒄𝒖𝒓𝒕(𝒍,𝒕,𝒔) ∙ 𝐶�jkm(R,m)

9�

R;<

.𝑷𝒊𝒎𝒃�(𝒍,𝒕,𝒔) ∙ 𝐶7� �(R,m)

9�

R;<

+.𝑷𝒊𝒎𝒃¡(𝒊,𝒕,𝒔) ∙ 𝐶7� ¡(7,m)

9|}

7;< ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

l

m;<

9G

?;<

∙ 𝜋(𝑠)

(11)

OC, Eq. Error! Reference source not found. considers the cost associated with Distributed Generation (DG), external
suppliers, discharge of ESS and EVs, DR by direct load control programs (curtailable loads), penalization of non-
supplied demand (negative imbalance) and penalization for excess of DG units’ generation (positive imbalance).3

On the other hand, the aggregator can receive its incomes (In) from market transactions as follows:

𝑀𝑇 =..§.J𝑃 j¨(�,m) − 𝑃?ORR(�,m)L ∙ 𝑀𝑃(�,m,?)

9©

�;<

ª ∙ 𝜋(𝑠)
l

m;<

9G

?;<

(12)

where offers and bids are allowed in two markets with distinctive characteristics, namely wholesale and local markets.

B) Constraints of the problem
The problem constraints are similar to [8]. The problem is mainly constrained by the energy balance constraint (Eq.
8), DG generation and supplier limits in each period, ESS capacity, charge and discharge rate limits, EVs capacity, EVs’
trips requirements, charge and discharge efficiency and rate limits. For the competition, to simplify the problem we
have neglected the network constraints regarding reactive powers balance, voltage and angle limits.

The main constraint to fulfill in the formulation is the active power balance constraint which states that the amount
of generated energy should be equal to the amount of consumed energy at every instant 𝑡:

.𝑃z{(7,m)

9|}

7;<

+.𝑃O~m(�,m)

9�

�;<

+ . 𝑷𝑷𝑽(𝒋,𝒕,𝒔)

9���|}

�;<

+.J𝑷𝑬𝑺𝑺�(𝒆,𝒕,𝒔) − 𝑷𝑬𝑺𝑺¡(𝒆,𝒕,𝒔)L
9�

O;<

+.J𝑷𝑬𝑽�(𝒗,𝒕,𝒔) − 𝑷𝑬𝑽¡(𝒗,𝒕,𝒔)L
9�

P;<

+.J𝑷𝒄𝒖𝒓𝒕(𝒍,𝒕,𝒔) − 𝑷𝒍𝒐𝒂𝒅(𝒍,𝒕,𝒔)L
9�

R;<

+ .J𝑷𝒃𝒖𝒚(𝒎,𝒕) − 𝑷𝒔𝒆𝒍𝒍(𝒎,𝒕,𝒔)L +
9©

�;<

.𝑃7� ¡(7,m,?)

9|}

7;<

−.𝑃7� �(R,m,?)

9�

R;<
= 0												∀𝑡, ∀𝑠

(13)

3 See nomenclature at the end of this subsection.

20

It can be noticed that the balance constraint must be satisfied for all the possible uncertain scenarios 𝑠, which require
solutions that are robust to the variations of uncertain variables/parameters.

C) Uncertainty representation
We assume that a correct set of scenarios that simulate real-world conditions can be generated considering forecast
and associated errors based on historical data or previous experiences. The uncertainty in this problem comes from:
i) PV renewable sources, ii) load profiles, iii) EVs’ scheduling, and iv) market prices for wholesale and local markets.

We apply the technique for scenario generation (and scenario reduction) used in [2]. In a first step, a large number of
scenarios is generated by Monte Carlo Simulation (MCS). The MCS uses the probability distribution function of the
forecasted errors (which can be obtained from historical data) to create a number of scenarios according to:

𝑋?(𝑡) = 𝑥°UkO�Q?m(𝑡) + 𝑥OkkUk,?(𝑡)	 (14)

Where 𝑥OkkUk,? is a normal distribution function with zero-mean and standard deviation 𝜎, and 𝑥°UkO�Q?m(𝑡) is the
forecasted valued of variable 𝑥 at time 𝑡. To simplify, all forecast errors for the uncertain inputs are represented by a
normal distribution function. In a second step, a standard scenario reduction technique is applied that excludes
scenarios with low probabilities and combines those that are close to each other in terms of statics metrics (for a
complete description of these techniques see [2]).

For the competition, we created 5000 scenarios for PV generation, load consumption and market price variations. For
the PV uncertainty generation, an error of 15% was used. Regarding the load forecasted and market prices, errors of
10% and 20% were used respectively. In a second step, the number of scenarios was reduced to 500 using specialized
reduction techniques [5]. Regarding EVs trips, we have randomly generated 500 different forecast scheduling for each
scenario using the tools in [6].

Participants should design their algorithms to find solutions with optimal fitness and robust behavior over the 500
provided scenarios.

Nomenclature
Indices Parameters

𝑖 Distributed generation (DG) units 𝑁z{ Number of DG
𝑗 PV units 𝑁�� Number of PV
𝑘 External suppliers 𝑁� Number of external suppliers
𝑒 Energy storage systems (ESSs) 𝑁O Number of ESSs
𝑣 Electric vehicles (EVs) 𝑁P Number of EVs
𝑙 Loads 𝑁u Number of loads
𝑚 Markets 𝑁� Number of markets
𝑠 Scenarios 𝑁? Number of scenarios
𝑡 Periods 𝑇 Number of periods

Variables 𝐶z{ Generation cost of DG (m.u./kWh)
𝑃z{ Active power generation (kW) 𝐶O~m Cost of external supplier (m.u./kWh)
𝑃O~m External supplied power (kW) 𝐶�� Cost of PV generation (m.u./kWh)
𝑃�SS� Discharge power of ESS (kW) 𝐶�SS� Discharging cost of ESS (m.u./kWh)
𝑃��� Discharge power of EV (kW) 𝐶��� Discharging cost of EV (m.u./kWh)
𝑃�SS¡ Charge power of ESS (kW) 𝐶�jkm Load curtailment cost (m.u./kWh)
𝑃��¡ Charge power of EV (kW) 𝐶7� Grid imbalance cost (m.u./kWh)
𝑃�jkm Power reduction of load (kW)
𝑃7� � Non-supplied power for load (kW) 𝜋(𝑠) Probability of scenario 𝑠
𝑃7� ¡ Exceeded power of DG unit (kW) 𝑃�� Photovoltaic generation (kW)
𝑃 j¨ Power buy to the market (kW) 𝑃RUQµ Forecasted load
𝑃?ORR Power sell to the market (kW) 𝑀𝑃 Electricity market price (m.u./kWh)
𝑥z{ Binary variable for DG status

	

21

Bibliography
[1] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Environments—A Survey,”

IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 303–317, Jun. 2005.

[2] J. Soares, B. Canizes, M. A. Fotouhi Gazvhini, Z. Vale, and G. K. Venayagamoorthy, “Two-
stage Stochastic Model using Benders’ Decomposition for Large-scale Energy Resources
Management in Smart grids,” IEEE Trans. Ind. Appl., pp. 1–1, 2017.

[3] E. Mengelkamp, J. Gärttner, and C. Weinhardt, “Intelligent agent strategies for
residential customers in local electricity markets,” in e-Energy 2018 - Proceedings of the
9th ACM International Conference on Future Energy Systems, 2018.

[4] F. Lezama, J. Soares, and Z. Vale, “Optimal Bidding in Local Energy Markets using
Evolutionary Computation,” in 20th Internantional Conference on Intelligent System
Applications to Power Systems, 2019.

[5] N. Gröwe-Kuska, H. Heitsch, and W. Römisch, “Scenario reduction and scenario tree
construction for power management problems,” in 2003 IEEE Bologna PowerTech -
Conference Proceedings, 2003, vol. 3, pp. 152–158.

[6] J. Soares, B. Canizes, C. Lobo, Z. Vale, and H. Morais, “Electric Vehicle Scenario
Simulator Tool for Smart Grid Operators,” Energies, vol. 5, no. 12, pp. 1881–1899, 2012.

[7] F. Lezama, J. Soares, E. Munoz de Cote, L. E. Sucar, and Z. Vale, “Differential Evolution
Strategies for Large-Scale Energy Resource Management in Smart Grids,” in GECCO ’17:
Genetic and Evolutionary Computation Conference Companion Proceedings, 2017.

[8] J. Soares, C. Lobo, M. Silva, H. Morais, and Z. Vale, “Relaxation of non-convex problem
as an initial solution of meta-heuristics for energy resource management,” in 2015 IEEE
Power & Energy Society General Meeting, 2015, pp. 1–5.

