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1. Introduction  
Following the success of the previous editions at WCCI 2018 and CEC 20191 we are launching a more 
challenging competition at major conferences in the field of computational intelligence. This WCCI 2020 
competition proposes two test beds in the energy domain: 

Testbed 1) optimization of a centralized day-ahead energy resource management problem in smart grids 
under environments with uncertainty. This test bed is similar to the past challenge using a challenging 
500-scenario case study with high degree of uncertainty. We also add some restrictions to the initialization 
of initial solution and the allowed repairs and tweak-heuristics. 

Testbed 2) bi-level optimization of end-users’ bidding strategies in local energy markets (LM). This test 
bed is constructed under the same framework of the past competitions (therefore, former competitors 
can adapt their algorithms to this new testbed) , representing a complex bi-level problem in which 
competitive agents in the upper-level try to maximize their profits, modifying and depending on the price 
determined in the lower-level problem (i.e., the clearing price in the LM), thus resulting in a strong 
interdependence of their decisions. 

The proposed testbeds are developed under the same framework of the past competitions with a number 
of adjustments. 

  

 
1 Check former competitions in http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/ and 
http://www.gecad.isep.ipp.pt/ERM2019-Competition  
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2. General description of the smart grid applications  

2.1 Testbed 1 
 

The problem of Testbed 1 considers an energy aggregator with aims of procuring energy needs from distributed 
resources and the electricity market. The aggregator looks for the minimization of operational costs while making 
revenues from selling energy in available electricity markets. Moreover, it may use its own assets, e.g., energy storage 
systems (ESS), to supply the load demand. In addition, a V2G feature that allows the use of energy in the battery of 
electric vehicles (EV), is also possible. The energy aggregator establishes bilateral energy contracts with those who 
seek electricity supply, e.g., residential and industry customers. In this case, it is assumed that the aggregator does 
not make profits from the supply of energy to fixed loads and EVs charging. The main idea is that the optimization 
software can perform the energy resource scheduling of the dedicated resources in the day-ahead context for the 24 
hours of the following day.  

 
Figure 1 Overview of the aggregator energy management problem 

 

Since the aggregator performs the scheduling of resources for the day-ahead (i.e., the next 24 hours), it relays in the 
forecast of weather conditions (to predict renewable generation), load demand, EV trips, and market prices. However, 
the assumption of “perfect” or “highly accurate” forecast might bring catastrophic consequences into the operation 
of the grid when the realizations do not follow the expected predictions. 

Due to this situation, it is desired that the aggregator determines solutions that are robust to the uncertainty inherent 
in some parameters and the environment. Four aspects of uncertainty that affects the performance of a solution are 
considered in this competition, namely: a) Weather conditions, b) Load forecast, c) Planned EVs’ trips, and d) Market 
prices. 

Therefore, the aggregator should find solutions that provide not only an optimal (or near-optimal) value of 
operational costs but also those solutions must have the characteristic of being as less sensible as possible to the 
variations of the uncertain parameters. In [1], uncertainty in evolutionary computation is classified into four 
categories, namely noise, robustness, fitness approximation and time-varying fitness functions. This competition lays 
in the category of robustness, in which the design variables (or environmental parameters in this particular case) are 
subject to perturbations or changes after the optimal solution has been determined (i.e., the realizations of uncertain 
parameters).  

To incorporate the uncertainty of parameters, we use Monte Carlo simulation (MCS) to generate a large number of 
possible scenarios using probability distribution functions of the forecast errors (obtained from historical data). A high 
number of scenarios increases the accuracy of the model but comes with a computations cost associated with a large 
number of variations in the parameters. Due to this, a reduction technique [2] is used to maintain a reasonably small 
number of scenarios while keeping the main statistical characteristics of the initial scenarios’ set..  

 



5 
 

2.2 Testbed 2 
We consider a day-ahead LM bidding optimization problem, in which agents submit bids/offers to maximize their 
profits (or equivalently minimize their costs). We assume that agents of the type consumers only, small producers, 
and prosumers (i.e., consumers with generation capabilities) coexist in this Local Market (LM). Also, agents have 
access to the main grid, which works as a back-up system. Therefore, as in [3], agents can trade energy in the LM with 
prices between the feed-in tariff cF	and the grid electricity tariff cG. In fact, it is assumed that cF<cG and therefore 
buy/sell energy from the grid is less beneficial to agents than transacting energy in the LM. Figure 2 illustrates the local 
market scenario. 

 
Figure 2 Considered Local Market and the grid as a back-up system 

 

The LM bidding optimization problem can be modeled as a bi-level optimization problem. The upper-level 
corresponds to the maximization of agents' profits, and the lower-level problem corresponds to the maximization of 
energy transacted in the LM. Therefore, the solution of the lower-level (after determining the clearing price) affects 
the upper-level by modifying the profits of all agents. 

Consider a set of consumer agents i=  {1,2,...N_c}, and producer agents j=  {1,2,...N_p}, where each agent i wants to 
minimize its costs while agents j want to maximize their profits. The upper problem, therefore, is a multi-objective 
problem in which each agent wants to maximize/minimize their profits/costs. 

The full formulation of the problem is available in the publication [4]. 

3. Metaheuristic simulator framework 
In this competition, the method of choice used by the participants to solve the problem must be a metaheuristic-
based algorithm (e.g. Differential Evolution, Particle Swarm Optimization, Vortex Search, etc.). The framework 
adopted in the competition is described in this document and follows the structure presented in Figure 3.  
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Figure 3 General framework of the simulation platform 

 

The simulation platform has been implemented in MATLAB© 2016 64-bit and consists of different scripts with specific 
targets in the simulation. As shown in Figure 3, some scripts correspond to encrypted files provided by the organizers 
(blue color in the figure). The user only needs to implement two scripts (see Sect. 4.A.2 and Sect. 4.A.6), namely: 

i. one script for setting the parameters required by their algorithm (A.2). 
ii. a second script for the implementation of their proposed solution method (A.6).  

Examples of how to implement these two script functions, and how the organizer’s scripts work on the platform, are 
provided in Sect. 4. 

Before of the guidelines for participants, we provide additional information on the encoding of the solutions, 
assumptions and some notes on the implementation of the problem below. 

A maximum number of 50,000 evaluations is allowed in the competition for each testbed. Take into account that it is 
not the same as algorithm iterations, and that each time the fitness function is evaluated. 

 

3.A) Encoding of the individual 
The solution structure (e.g., an individual in DE, a particle in PSO, or genotype in GA) is a fundamental part of the 
metaheuristics to represent a given solution. The solution representation adopted in this competition follows the 
vector representation showed in Figure 4. The initial solutions in this edition of the competition should be initialized 
randomly between the upper and lower bounds of the variables. Heuristics and special tweaks are not allowed.  
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Testbed 1  

 

 
Figure 4 Solution representation in testbed 1 

 

Each solution is encoded, therefore, as a vector with ‘6’ groups of variables that are repeated sequentially across the 
24 periods (hours) of optimization. In the vector representation, all variables, apart from group (2), are continuous 
variables with bounds matching the power or capacity limits of the associated variables. Group (2), generator binaries, 
corresponds to binary variables that are used to indicate if a generator is connected (‘1’ value) or disconnected (‘0’ 
value). Binary variables might also present a continuous value since the fitness function internally corrects their value 
using a simple round operation. 

A special attention is pointed to group (1). That group belongs to variables of distributed generation (DGs). It is 
important to notice that DGs include not only dispatchable generators but also PV generation. However, PV 
generation cannot be controlled, so even when it is part of the vector solution, the variables corresponding to PV 
generation (variables of group (1)) will take a specific, and thus unalterable, value depending on the considered 
scenario.  

Testbed 2 

The optimization problem, seen as a whole, searches for the optimal bidding of agents in the LM to maximize their 

profits. Therefore, assuming we have K = {1,2,...Nk}1, we seek to determine the best tuple (qk , pk )∀k ∈ K representing 
the optimal price and quantity to bid in the LM for each agent. The bidding also should be done for all t ∈ T periods 
of the optimization process (i.e., T = 24 periods in the day-ahead market). Therefore, we define a vector ⃗x = {[qk,t] ∪ 
[pk,t]} including the bids for quantity and price the kth agent will send to the LM. To avoid separating the agents by 
consumer and producer types, we use a sign convention in which a positive quantity represents a bid (i.e., buying in 
the market), while a negative quantity represents an offer (i.e., selling in the LM). Therefore, we can control the agent 
action by defining variable bounds in which a consumer agent can send bids in the market within the bounds [0, Lmax 
] (i.e., between 0 and their maximum consumption), while producer agents can send offers within the bounds [−Pmax 
, 0] (i.e., between 0 and their maximum production capacity). The bounds for prices are the same for all agents and 

within the range [cF , cG]. Figure 5 illustrates the structure of solutions to understand how the individual is encoded.  
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Figure 5 Solution representation in testbed 2 

 

3.B) Fitness function 
A maximum number of 50,000 function evaluations is allowed in the competition in each testbed.  

Testbed 1  

The fitness function 𝑓′ considers the objective 𝑍 of the aggregator (see Appendix section, Eq. (10)), plus the 
summation of the penalties found during evaluation of the solutions:  

𝑓′(𝑋⃗) = 𝑍 + 𝜌.max	[0, 𝑔7]
9:

7;<

	

	

(1) 

where 𝑋⃗ is a solution that follows the structure showed in Figure 4. In this case, 𝑔7 is the value of the 𝑖th constraint 
(equality or inequality) and 𝜌 is a configurable penalty factor (usually, a high value is considered). See sect. 4.B for 
instructions regarding fitness function and how penalties work. 

In this competition, we consider uncertainty in some parameters that modify the value of the fitness function 
according to different scenarios generated by Monte Carlo simulation. The fitness function value is modifying by 
perturbation as follows: 

𝐹?(𝑋⃗) = 𝑓′(𝑋⃗ + 𝛿?) 
 

(2) 

where 𝛿? is the disturbance of variables and parameters in scenario 𝑠, and 𝐹?(𝑋⃗) is the fitness value associated to 
the	𝑠 Monte Carlo sampling. Therefore, an expected mean value for a given solution over the set of considered 
scenarios can be calculated as: 

𝜇𝐹𝑆(𝑋⃗) =
1
𝑁?
∙.𝑓′(𝑋⃗ + 𝛿?)
9G

?;<

 

 

(3) 

  

Similarly, the standard deviation of a solution over the set of scenarios can be calculated as: 

𝜎𝐹𝑆(𝑋⃗) = I 1
𝑁?
∙.J𝑓KJ𝑋⃗ + 𝛿?L − 𝜇𝐹𝑆(𝑋⃗)L

N
9G

?;<

 

 

(4) 

 

Eqs. (3) and (4) depends on the number of scenarios considered in the evaluation. As we will show below, the fitness 
function in the optimization process receive as a parameter the number of scenarios that the competitor wants to 
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evaluate. However, keep in mind that for the final evaluation (See Sect. 5), the solutions will be evaluated through 
the total number of scenarios (500 for the competition). 

Figure 6 shows a schematic representation of the fitness function. We developed the fitness function as a black box 
as shown in Figure 6(a) (it is an encrypted function) that receives as input arguments an array with the solutions, the 
information of the case study, some additional parameters, and the number of scenarios that the user wants to 
evaluate (a maximum of 500 scenarios is considered).  The function returns an array with the fitness values of the 
entire population over a randomly selected subset of scenarios (see sect. 5.B for details on the implementation of 
this function). 

Figure 6(b) shows the internal operation of the fitness function, which randomly selects 𝑁OPQRS scenarios (𝑁OPQRS is a 
parameter not specified by the user. It is set to a default value of 10 and cannot be changed) from the 𝑁? available 
ones. Notice from Figure 6(b) that the actual number of function’s evaluations depends on the size of the population 
to evaluate, and the number of scenarios that the user wants to consider each time that the fitness function is called. 
The number of functions evaluations is therefore: 

𝑁𝐹𝐸 = 𝑁?UR ∗ 𝑁OPQRS 
 

(5) 

Recall that a maximum number of 50,000 function evaluations is allowed in the competition.  

 
(a) 

 

 
(b) 

Figure 6 Fitness function. a) Black box. b) Internall functioning. 
 
Testbed 2 

Solutions in testbed 2 should be evaluated in an objective function that returns the mean average profit of all agents 
plus the standard deviation:  

 
𝑓′(𝑋⃗) = 𝑚𝑒𝑎𝑛(𝑝𝑟𝑜𝑓𝑖𝑡𝑠) + 𝑠𝑡𝑑(𝑝𝑟𝑜𝑓𝑖𝑡𝑠) 

 
(6) 
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where mean(Profits) and std(Profits) are functions that compute the average and standard deviation (respectively) of 
the profits that all agents obtained considering the bids/offers encoded in the individual. The negative sign in the first 
term is used to transform the profits maximization problem into a minimization one. The less the value in Eq. (6), the 
better the mean profits achieved by all agents. The fitness function in testbed 2 acts as a black box as Figure 6. 

3.C) Some assumptions: 
Testbed 1 

1. The aggregator minimizes operational costs while maximize its profits (costs minus income) 
2. Electric vehicles can be controlled continuously (between 0 and max charge rate) 
3. The same assumption applies to the V2G principle (between 0 and max discharge rate) 
4. The stationary batteries or Energy Storage Systems (ESS) can be controlled continuously similar to the EVs/V2G 
5. The cost function of DG units is assumed to be linear 
6. It is assumed that the energy aggregator can submit bids and asks to the electricity market. 
7. The markets in which the aggregator participates have different limits for bid and asks 
8. Two markets are considered corresponding to wholesale and local markets 
9. 5000 reduced to 500 scenarios are generated to simulate uncertainty of EVs travels, PV generation, load 

variations, and market prices 
 

 

3.D) Some notes on the implementation: 
Testbed 1 

1. Internally in the fitness function, it is assumed that the charge/discharge variables for the EVs are the same, but 
positive values for charge and negative values for discharge to save computational memory 

2. The same principle described above for EV applies for the ESS variables 
3. Internally, the market value is positive for an offer (sale) and negative for a buy bid 
4. Binary variables are always rounded internally in the objective function 
5. Direct repair of solution is used in the fitness function (see section 0) 
6. The fitness function internally selects a random subset of the available 500 scenarios each time the function is 

called. 

 

3.E) Scenario overview 
Testbed 1  

This section briefly describes the case study prepared for the competition, which is based on a 25-bus microgrid that 
represents a residential area with 6 DGs (5 dispatchable units and 1 PV generator), 1 external supplier, 2 ESSs, 34 EVs, 
and 90 loads with demand response capability. Moreover, it is considered that two markets (wholesale and local) are 
available for buy/sale of energy. Table 1 outlines the resources available in the MG. 

Table 1. Available Energy Resources 

Energy resources Prices (m.u./kWh) Capacity (kW) Units 
Dispatchable DGs 0.07-0.11 10-100 5 
External suppliers 0.074-0.16 0-150 1 

ESS 
Charge - 0-16.6 

2 Discharge 0.03 0-16.6 

EV 
Charge - 0-111 

34 Discharge 0.06 0-111 
DR curtailable loads 0.0375 4.06-8.95 90 

Forecast (kW) 
Photovoltaic - 0-106.81 1 (17 agg) 
Load - 35.82-83.39 90 

Limits (kW) 
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Market 1 (WS) 0.021-0.039 0-100 1 
Market 2 (LM) 0.021-0.039 0-10 1 

 
Uncertainty (generation of scenarios) 

For the competition, we created 5000 scenarios for PV generation, load consumption and market price variations. For 
the PV uncertainty generation, an error of 15% was used. Regarding the load forecasted and market prices, errors of 
10% and 20% were used respectively. In a second step, the number of scenarios was reduced to 500 using specialized 
reduction techniques [5]. Regarding EVs trips, we have randomly generated 500 different forecast scheduling for each 
scenario using the tools in [6]. Figure 7 shows graphically the generated scenarios. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7 Fitness function. a) PV generation. b) Load forecast. c) Wholesale market. d) Local market. 
 

Testbed 2 

We adopt a case study with nine agents, in which 3 of them are consumers, 3 are prosumers (i.e., consumers with PV 
generation capabilities), and 3 are CHP generators. To generate case study data, sample power profiles of residential 
houses and PV systems are built using the open datasets available in PES ISS website2. We build three standard house 
power profiles and a PV power profile (see Figure 8). With these profiles, we generate agent data using a randomized 
function with uniform distribution, 20% around the standard profiles. Figure 8 also provides the power ranges of the 
base profiles. We consider generator agents corresponding to CHPs with a maximum generation capacity of 2kW and 
a marginal cost calculated using the equation provided in [4] with a factor of b_CHP=0.18 EUR/kWh. Finally, feed-in 
and grid tariffs are set to CF=0.12$ and CG=0.28 EUR/kWh as in [4]. 

 

 
2 Open data online at http://sites.ieee.org/pes-iss/data-sets/ 
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Figure 8 Profiles used in the case study. Ranges of power (in kW): house 1 [0.18-0.48], house 2 [0.06-2.50], house 3 [0.07- 
0.36], PV (house) [0-1].  
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4. Guidelines for participants 
These instructions include as example the metaheuristic differential evolution (DE) [7] implemented and adapted to 
the present framework (It has been modified by GECAD). 

It is important that the participants use the following recommendations and structure to avoid issues in using the 
supplied datasets and codes. 

4.A) mainWCCI_SG_2020.m - Master function/script 
# mainWCCI_SG_2020.m is the main file for the competition. The competitors can modify this main script as needed. 
Nevertheless, it is worth noting that this main script is ready to use. Participants should only include their functions 
to perform the optimization of the problem. 
 
mainWCCI_SG_2020.m 
…… 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Select testbed 
Select_testbed=1; 
%Testbed 1: Energy resource management with uncertainty 
%Testbed 2: Optimal bidding in local energy markets             
DB=Select_testbed;  
% 1: Case study testbed 1 
% 2: Case study testbed 2 
[caseStudyData, DB_name]=callDatabase(DB); 
Select_Algorithm=1; 
%1: DE algorithm (test algorithm) 
%2: Your algorithm 
algorithm='DE-rand'; %'The participants should include their algorithm here' 
DEparameters %Function defined by the participant 
No_solutions=deParameters.I_NP; % %Notice that some algorithms are limited to one 
individual  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Set other parameters 
otherParameters =setOtherParameters(caseStudyData,No_solutions, Select_testbed); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Set lower/upper bounds of variables  
[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Call the MH for optimization 
ResDB=struc([]); 
    for iRuns=1:noRuns %Number of trails 
        tOpt=tic; 
        rand('state',sum(noRuns*100*clock))% ensure stochastic indpt trials 
 
        otherParameters.iRuns=iRuns;         
            switch Select_Algorithm 
                case 1 
                    [ResDB(iRuns).Fit_and_p, ... 
                    ResDB(iRuns).sol, ... 
                    ResDB(iRuns).fitVector]= ...                    
deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB); 
…. 
     end            
 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %% Save the results and stats 
        Save_results 
 
 
….. 

 
As it can be seen, the main script follows the structure from Figure 3 (Sect. 3). Details in the implementation of each 
part of the code are given next. 
 
A.0 and A.1 - # mainWCCI_SG_2020.m - Loading the testbed and case study 
# mainWCCI_SG_2020.m  – This is the main framework file where you can select the testbed (either 1 or 2), which 
will load the caseStudyData struct (callDatabase.p – encrypted) with all the relevant dataset information depending 
on the selected testbed. Participants do not need to worry about the content of the case study and loading the files.  

A.6 
A.4 

A.3 
A.2 

A.0 
A.5 

A.1 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Select_testbed=1; 
%Testbed 1: Energy resource management with uncertainty 
%Testbed 2: Optimal bidding in local energy markets 
%% Load Data base  
noRuns=20; %this can be changed but final results should be based on 20 trials 
DB=Select_testbed;  
% 1: Case study testbed 1 
% 2: Case study testbed 2 
[caseStudyData, DB_name]=callDatabase(DB); 

 
A.2 - #DEparameters.m - Set parameters of the metaheuristic 
# DEparameters.m file – This function file must be specific to the metaheuristic implemented by the participant. This 
is just an example using DE to show how participants should implement this function with all the parameters related 
to their algorithm. 
 
deParameters.I_NP= 12; % Size of the population in DE 
deParameters.F_weight= 0.3; %Mutation factor 
deParameters.F_CR= 0.5; %Recombination constant 
deParameters.I_itermax= 100; % number of max iterations/gen 
deParameters.I_strategy   = 1; %DE strategy 
  
deParameters.I_bnd_constr = 1; %Using bound constraints  
% 1 repair to the lower or upper violated bound  
% 2 rand value in the allowed range 
% 3 bounce back 

 
A.3 - #setOtherParameters.m - Set other necessary parameters and struct 
# setOtherParameters.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It 
just sets parameters and data needed for the fitness function to work. Please take into account a third parameter is 
added to the previous framework to consider another testbed. It is a mandatory function that creates a struct 
“otherParameters” and should be run as illustrated in main function section: 
 
%% Set other parameters 
otherParameters =setOtherParameters(caseStudyData,No_solutions, Select_testbed); 

 

Participants must pass the “otherParameters” struct as argument to the functions: 
 
[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters, 
Select_testbed); 
….. 
[ResDB(iRuns).Fit_and_p, ... 
                    ResDB(iRuns).sol, ... 
                    ResDB(iRuns).fitVector]= ...                    
deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB); 

 
A.4 - #setVariablesBounds.m - Set bounds of variables 
# setVariablesBounds.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It 
just sets the bounds of the problem variables. Please take into account a third parameter is added to the previous 
framework to consider another testbed. 
 
%% Set lower/upper bounds of variables  
[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters, 
Select_testbed); 

 

The outputs of this function “[lowerBounds,upperBounds]” – should be used by your algorithm to generate the initial 
solutions and to validate if the bounds are being respected in each iteration.  
 
The order of the variables in the implemented codes cannot be modify for the proper functioning of the fitness 
function. The structure of the solution is indicated in Sect. 3.A of this document 
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The following parameters are used to identify the ids of each type of variables (Example of testbed 1 – only works for 
testbed 1). These “ids” are used to locate the type of variables in the solutions matrix (ids correspond to the columns 
while individuals to the rows).  
 
 
otherParameters.ids.idsGen 
otherParameters.ids.idsXGen 
otherParameters.ids.idsV2G 
otherParameters.ids.idsLoadDR 
otherParameters.ids.idsStorage 
otherParameters.ids.idsMarket 

Example of use testbed 1: 
periods = caseStudyData.parameterData.numPeriods; 
nParticles = size(solutions,1); %Number of population (solutions) 
nVariables = size(solutions,2); %Number of variables (dimension) 
idsV2G= otherParameters.ids.idsV2G; 
getPeriod = 2; % Period 2 used to illustrate this example  
tempIds=idsV2G+(nVariables/periods)*(getPeriod-1); 
solutions(:,tempIds) % EVs variables for period 2, all individuals 
solutions(2,tempIds) % EVs variables for period 2, second individual 
A.5 - #deopt_simple.m - Algorithm proposed by the competitor 
The participants should generate a scrip called #MHalgorithm.m or similar. This algorithm should replace 
#deopt_simple.m which is provided as example: 

[ResDB(iRuns).Fit_and_p, ... 
                    ResDB(iRuns).sol, ... 
                    ResDB(iRuns).fitVector]= ...                    
deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB); 

 

Your metaheuristic should receive as input parameters: 

1. deParameters: struct with the parameters configuration for your algorithm to work (it is generated by the user) 
2. caseStudyData: struct with the information of the case study 
3. otherParameters: struct with additional information required by the fitness function 
4. lowerB/upperB: lower and upper bounds of variables 

Your metaheuristic code should return to the main script the following variables:  

1. ResDB(iRuns).fit_and_p: array of size 1x2 with the best fitness and penalties values 
2. ResDB(iRuns).sol: vector of size: 1 x noVariables with the best candidate solution found by your algorithm 
3. ResDB(iRuns).fitVector: array of size: 2xnoIterations with the value of the fitness and penalties over the 

iterations. 

The participants are encouraged to save the results of each trial/run in a struct “ResDB”, as shown in the example. 
That will ease the evaluation process by the organizers. 

A.6 - #Save_results.m - Benchmark results (text-files) 
#Save_results.m (encrypted) – The output is written to text-files using this script. The following tables should be 
produced: 

Table 1. Table_Time: Computing time spent for all optimization trials (benchmark_Time.txt) 

 timeSpent (s) 
Run1  
Run2  
Run3  

…  
Run20  

 
Table 2. Table_Fit: Individual benchmark of the trials (benchmark_Fitness.txt) 

 AvgFit StdFit MinFit MaxFit varFit ConvergenceRate Penalties 
Run1        
Run2        
Run3        
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…        
Run20        

 

Table 3. Table_TrialStats: Summary statistics or the trials (benchmark_Summary.txt) 
Ranking 

Index Average Standard 
deviation Minimum Maximum Variance Code 

RankingIndex PAvgFit PstdFit PminFit PmaxFit PvarFit validationCode 
 

In addition, this function should automatically generate the file “Send2Organizer.mat”, which should include 
the best solutions found in each of the trials. That file will be used to double-check the reported results by validating 
all the solutions contained there over the 500 scenarios of the case study (testbed 1) and one scenario in testbed 2. 
For that reason, it is important that the participants put special care in returning the best solutions from their 
algorithms and stored in “ResDB.sol” (see Sect. 4.A.6).  
 
To clarify, the “Send2Organizer.mat” file will include a matrix called “solutions” with the solutions stored in 
“ResDB.sol”. The solutions there will be evaluated according to Sect. 5 in order to double check the ranking 
index of each participant. The lower the ranking index, the better the performance of a participant. 
 
*A number 20 trials should be made. 
*50,000 evaluations per trial should be made. 
 

4.B) Fitness function evaluation 
# fitnessFun_DER_WCCI.m and #fitnessFun_WCCI2020.m (encrypted) – this is the fitness function to be used by 
participants and should be called as below. The “fnc” parameter will be assigned automatically to load the 
corresponding fitness function according to the selected testbed Sect. 4.A.0. 

[S_val, ~]=feval(fnc,FM_pop,caseStudyData,otherParameters); 
 
The function receives as input: 

1. fnc: string with the fitness function m file name: and “fitnessFun_DER_WCCI.m” for testbed 1 and 
“#fitnessFun_WCCI2020.m” for testbed 2. 

2. FM_pop: matrix of size 𝑁?UR × 𝐷, in which 𝑁?UR (rows) represents the number of individuals/solutions in an array, 
and 𝐷 (columns) represents the dimension (i.e., number of variables) of the optimization problem. This variable 
should be encoded in the metaheuristic algorithm proposed by participants (e.g., #MHalgorithm.m, Sect. 4.A.5). 
Only 1 individual is also possible (one row). 

3. caseStudyData: struct with data of the case study with all the scenarios as loaded by callDatabase function (i.e., 
#callDatabase.m, Sect. 4.A.1). 

4. otherParameters: Struct with additional information as loaded by #setOtherParameters.m Sect. 4.A.3). 

The function returns as output: 

1. 𝐒_𝐯𝐚𝐥: Matrix of size 𝑁?UR	represents the number of individuals. This matrix includes the fitness values including 
penalties of the solutions across different scenarios. 

The #fitnessFun evaluates all the population (individuals) at once. A maximum number of 50,000 function evaluations 
is allowed in the competition in each testbed. The table below helps the participant to have an idea of the maximum 
number of iterations and population It can set without surpassing the allowed number of evals. So, take it account 
when designing your algorithm: 

Table 1. Algorithm population/iterations limits 

Size of the population Max. iterations Testbed 1 Max. iterations Testbed 2 
1 5000 50000 
5 1000 10000 

20 250 2500 
50 100 1000 

100 50 500 
1000 5 50 
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B1. Best solution  
Since #fitnessFun returns a single value associated to an individual, but the evaluation of individuals across scenarios, 
the participants should select a criterion to determine which is the best individual in their population, or how they 
want to perform the search. The criteria for selecting the best individual could vary from worst-case performance, 
mean fitness value, best fitness value, etcetera. Here, we provide an example of selecting the best individual based 
on the worst-case performance: 

[solFitness_M, solPenalties_M,Struct_Eval]= 
fitnessFun_DER_WCCI(solutions,caseStudyData,otherParameters); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% The user should decide which is the best criterion to optimize.  
% In this example, we optimize worst-case performance 
[S_val, worstS]=max(solFitness_M,[],2); %Find worst-case performance 
[~,I_best_index] = min(S_val); %Select the best amount the worst-case performances 
 
FVr_bestmemit = FM_pop(I_best_index,:); % best member of current iteration 
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5. Evaluation guidelines 
A ranking index will be calculated using the 20 final solutions (one for each trial) provided by each participant in each 
testbed 1 and 2 (T1 and T2). With these solutions, the organizers will calculate the ranking index (𝑅𝐼j?Ok) for each 
participant 𝑎 based on the average fitness and standard deviation of each solution across the 500 scenarios in testbed 
1 and the average fitness in testbed 2. The values 𝑅𝐼j?Ok(Q)_l< and 𝑅𝐼j?Ok(Q)_lN will then be normalized and a final 
ranking will be produced. 

𝑅𝐼j?Ok(Q)_l< =
1

𝑁mk7QR?
∙ n . J𝜇𝐹𝑆Q(𝑋⃗7_𝑇1) + 𝜎𝐹𝑆Q(𝑋⃗7_𝑇1)L
9_mk7QR?

7;<

p 
(7) 

where 𝜇𝐹𝑆Q(𝑋⃗7_𝑇1) and 𝜎𝐹𝑆Q(𝑋⃗7_𝑇1) are functions that return the average value and standard deviation of the 
solution found in trial 𝑖 (i.e., 𝑋⃗7) by participant 𝑎 across the 500 considered scenarios (See Sect. 3.B). 

𝑅𝐼j?Ok(Q)_lN =
1

𝑁mk7QR?
∙ n . J𝜇𝐹𝑆Q(𝑋⃗7_𝑇2)L
9_mk7QR?

7;<

p 
(8) 

 

𝑅𝐼j?Ok(Q)_rs9tu =
1

𝑁𝑜𝑟𝑚(𝑅𝐼j?Ok(Q)_l<)
+

1
𝑁𝑜𝑟𝑚(𝑅𝐼j?Ok(Q)_lN)

 (9) 

 

Therefore, the winner of the competition will be the one that gets the maximum value of 𝑅𝐼j?Ok. The 
participants must consider this criterion while selecting the best search strategy in their algorithms. With 
this performance measurement, we are considering not only the best mean expected value, but also the 
robustness of the solution.  

6. Material to be submitted to the organizers 
For the validation of the results, the 3 benchmark text files and the “Send2Organizer.mat” file produced by 
# Save_results.m (see Sect. 4.A.6) should be submitted to the organizers. The implementation codes of each 
algorithm entering the competition must also be submitted along with final results for full consideration in the 
evaluation. The submitted codes will be used for further tests, which are intended to crosscheck the submitted 
results. The submitted codes will be in the public domain and no intellectual property claims should be made. 

Each participant is kindly requested to put the text files corresponding to final results, as well as the implementation 
files (codes), obtained by using a specific optimizer, into a zipped folder named: 

WCCI2020_testbedX_AlgorithmName_ParticipantName.zip 
(e.g. WCCI2020_testbed2_DE_Lezama.zip). 
 
The zipped folder must be summited to jan@isep.ipp.pt; flz@isep.ipp.pt and 
brmrc@isep.ipp.pt 

by 31th May 2020 
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Appendix: Mathematical formulation of testbed 1 
We divide this section in three parts for better understanding: A) Objective function, B) Constraints of the problem, 
and C) Uncertainty modelling. 

A) Objective function 
The envisaged problem can be modelled as a combinatorial Mixed-Integer Linear Programming (MILP) problem due 
to the presence of a high number of continuous, discrete and binary variables. The objective of the aggregator is to 
minimize operational costs (𝑂𝐶) while maximizing incomes (𝐼𝑛). This can be rewritten as minimization function Z: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑍 = 𝑂𝐶 − 𝐼𝑛 (10) 

The minimum value of 𝑍 is the total cost (or profits if negative) for the energy aggregator. Therefore, the goal in 
optimization terms is to obtain the minimum value of 𝑍 in the metaheuristics form. 

The aggregator looks for the minimization of the operational costs (𝑂𝐶) associated with the management of resources 
as follows: 

𝑂𝐶 =

..𝑃z{(7,m) ∙ 𝐶z{(7,m)

9|}

7;<

l

m;<
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OC, Eq. Error! Reference source not found. considers the cost associated with Distributed Generation (DG), external 
suppliers, discharge of ESS and EVs, DR by direct load control programs (curtailable loads), penalization of non-
supplied demand (negative imbalance) and penalization for excess of DG units’ generation (positive imbalance).3 

On the other hand, the aggregator can receive its incomes (In) from market transactions as follows: 

𝑀𝑇 =..§.J𝑃 j¨(�,m) − 𝑃?ORR(�,m)L ∙ 𝑀𝑃(�,m,?)

9©

�;<

ª ∙ 𝜋(𝑠)
l

m;<

9G

?;<

 

 

(12) 

 

where offers and bids are allowed in two markets with distinctive characteristics, namely wholesale and local markets.  

B) Constraints of the problem 
The problem constraints are similar to [8]. The problem is mainly constrained by the energy balance constraint (Eq. 
8), DG generation and supplier limits in each period, ESS capacity, charge and discharge rate limits, EVs capacity, EVs’ 
trips requirements, charge and discharge efficiency and rate limits. For the competition, to simplify the problem we 
have neglected the network constraints regarding reactive powers balance, voltage and angle limits. 

The main constraint to fulfill in the formulation is the active power balance constraint which states that the amount 
of generated energy should be equal to the amount of consumed energy at every instant 𝑡: 

.𝑃z{(7,m)

9|}

7;<

+.𝑃O~m(�,m)
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(13) 

 

 
3 See nomenclature at the end of this subsection. 
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It can be noticed that the balance constraint must be satisfied for all the possible uncertain scenarios 𝑠, which require 
solutions that are robust to the variations of uncertain variables/parameters. 

C) Uncertainty representation  
We assume that a correct set of scenarios that simulate real-world conditions can be generated considering forecast 
and associated errors based on historical data or previous experiences. The uncertainty in this problem comes from: 
i) PV renewable sources, ii) load profiles, iii) EVs’ scheduling, and iv) market prices for wholesale and local markets. 

We apply the technique for scenario generation (and scenario reduction) used in [2]. In a first step, a large number of 
scenarios is generated by Monte Carlo Simulation (MCS). The MCS uses the probability distribution function of the 
forecasted errors (which can be obtained from historical data) to create a number of scenarios according to: 

𝑋?(𝑡) = 𝑥°UkO�Q?m(𝑡) + 𝑥OkkUk,?(𝑡)	 (14) 

Where 𝑥OkkUk,? is a normal distribution function with zero-mean and standard deviation 𝜎, and 𝑥°UkO�Q?m(𝑡) is the 
forecasted valued of variable 𝑥 at time 𝑡. To simplify, all forecast errors for the uncertain inputs are represented by a 
normal distribution function. In a second step, a standard scenario reduction technique is applied that excludes 
scenarios with low probabilities and combines those that are close to each other in terms of statics metrics (for a 
complete description of these techniques see [2]).  

For the competition, we created 5000 scenarios for PV generation, load consumption and market price variations. For 
the PV uncertainty generation, an error of 15% was used. Regarding the load forecasted and market prices, errors of 
10% and 20% were used respectively. In a second step, the number of scenarios was reduced to 500 using specialized 
reduction techniques [5]. Regarding EVs trips, we have randomly generated 500 different forecast scheduling for each 
scenario using the tools in [6]. 

Participants should design their algorithms to find solutions with optimal fitness and robust behavior over the 500 
provided scenarios. 

Nomenclature 
Indices Parameters 

𝑖 Distributed generation (DG) units 𝑁z{  Number of DG 
𝑗 PV units 𝑁�� Number of PV 
𝑘 External suppliers 𝑁� Number of external suppliers 
𝑒 Energy storage systems (ESSs) 𝑁O Number of ESSs 
𝑣 Electric vehicles (EVs) 𝑁P Number of EVs 
𝑙 Loads 𝑁u Number of loads 
𝑚 Markets 𝑁� Number of markets 
𝑠 Scenarios 𝑁? Number of scenarios 
𝑡 Periods 𝑇 Number of periods 

Variables 𝐶z{  Generation cost of DG (m.u./kWh) 
𝑃z{  Active power generation (kW) 𝐶O~m Cost of external supplier (m.u./kWh) 
𝑃O~m External supplied power (kW) 𝐶�� Cost of PV generation (m.u./kWh) 
𝑃�SS� Discharge power of ESS (kW) 𝐶�SS� Discharging cost of ESS (m.u./kWh) 
𝑃��� Discharge power of EV (kW) 𝐶��� Discharging cost of EV (m.u./kWh) 
𝑃�SS¡ Charge power of ESS (kW) 𝐶�jkm Load curtailment cost (m.u./kWh) 
𝑃��¡ Charge power of EV (kW) 𝐶7�  Grid imbalance cost (m.u./kWh) 
𝑃�jkm Power reduction of load (kW)   
𝑃7� � Non-supplied power for load (kW) 𝜋(𝑠) Probability of scenario 𝑠 
𝑃7� ¡ Exceeded power of DG unit (kW) 𝑃�� Photovoltaic generation (kW) 
𝑃 j¨ Power buy to the market (kW) 𝑃RUQµ Forecasted load 
𝑃?ORR Power sell to the market (kW) 𝑀𝑃 Electricity market price (m.u./kWh) 
𝑥z{  Binary variable for DG status   
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