Manipulator trajectory planning using a MOEA

E.J. Solteiro Piresa,*, P.B. de Moura Oliveiraa,b, J.A. Tenreiro Machadoc

a Univ. Trás-os-Montes e Alto Douro, Dep. de Engenharia Electrotécnica, 5000-911 Vila Real, Portugal
b Centro de Estudos Tecnológicos, do Ambiente e da Vida, 5000-911 Vila Real, Portugal
c Instituto Superior de Engenharia do Porto, Dep. de Engenharia Electrotécnica, Rua Dr. António Bernadino de Almeida, 4200-072 Porto, Portugal

Received 2 February 2005; received in revised form 21 June 2005; accepted 26 June 2005
Available online 21 February 2006

Abstract

Generating manipulator trajectories considering multiple objectives and obstacle avoidance is a non-trivial optimization problem. In this paper a multi-objective genetic algorithm based technique is proposed to address this problem. Multiple criteria are optimized considering up to five simultaneous objectives. Simulation results are presented for robots with two and three degrees of freedom, considering two and five objectives optimization. A subsequent analysis of the spread and solutions distribution along the converged non-dominated Pareto front is carried out, in terms of the achieved diversity.

\#2006 Elsevier B.V. All rights reserved.

Keywords: Genetic algorithms; Multi-objective optimization; Robotic manipulators; Trajectory planning

1. Introduction

In the last 20 years genetic algorithms (GAs) have been applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, pattern recognition and speech recognition [1]. This paper addresses the planning of trajectories, meaning the development of an algorithm to find a continuous motion that takes the robotic manipulator from a given starting configuration to a desired end position in the workspace without colliding with any obstacle.

Several single-objective methods for trajectory planning, collision avoidance and manipulator structure definition have been proposed. A possible approach for generating the manipulator trajectories [2,3] consists in adopting the differential inverse kinematics, using the Jacobian matrix. However, these techniques must take into account the kinematic singularities, which may be hard to tackle. To avoid this problem, other algorithms for the trajectory generation are based on the direct kinematics [4–8].

Chen and Zalzala [2] proposed a GA method to generate the position and the configuration of a mobile manipulator. In this report the inverse kinematics scheme is applied to optimize the least torque norm, the manipulability, the torque distribution and the obstacle avoidance. Davidor [3] also applied GAs to the trajectory generation by searching the inverse kinematics solutions to pre-defined end effector robot paths. Kubota et al. [4] studied a hierarchical trajectory planning method for a redundant manipulator with a virus-evolutionary GA, running simultaneously two processes. One process calculates some manipulator collision-free positions and the other generates a collision free trajectory by combining these intermediate positions. Rana and Zalzala [5] developed a method to plan a near time-optimal, collision-free, motion in the case of multi-arm manipulators. The planning is carried out in the joint space and the path is represented as a string of via-points connected through cubic splines. Gacogne [9] presented a problem involving obstacle avoidance. The proposed technique looks for the emergence of system rules for a mobile robot to obtain a good road-holding behavior in different play-grounds. A multi-objective genetic algorithm is used to find short and readable solutions for every concrete problem. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg [10] suggested the use of a GA to solve multi-objective problems and since then other investigators have been developing new methods, such as multi-objective genetic...
algorithm (MOGA) [11], non-dominated sorted genetic algorithm (NSGA) [12], niched Pareto genetic algorithm (NPGA) [13], among many other variants [14].

This paper reports the use of a multi-objective method to optimize a robotic manipulator trajectory. The proposed method is based on a GA adopting direct kinematics. The optimal manipulator front is the one that minimizes the objectives without any obstacle collision in the workspace. Following this introduction, the rest of the paper is organized as follows: Section 2 formulates the problem and the GA-based method for its resolution. Section 3 presents several simulation results involving different robots, objectives and workspace settings. Finally, Section 4 outlines the main conclusions.

2. Problem and algorithm formulation

This study considers robotic manipulators that are required to move from an initial point up to a given final configuration. Two and three degrees of freedom (dof) planar manipulators (i.e. robots with two (2R) and three (3R) rotational joints/links, see Fig. 1) are used in the experiments with link lengths of 1 m and rotational joints which are free to rotate 2π rad. However, this algorithm can be extended to hyper-redundant robots. To test a possible manipulator/obstacle collision, the arm structure is analyzed in order to verify if it is inside of any obstacle. The trajectory consists in a set of strings representing the joint positions between the initial and final robot configurations.

2.1. Representation

The path for a iR manipulator ($i = 2, 3$), at generation T, is directly encoded as vectors in the joint space to be used by the GA. This is represented by (1), where i is the number of dof and Δt the sampling time between two consecutive configurations:

$$
\begin{align*}
\{q_1^{(\Delta t,T)}, \ldots, q_i^{(\Delta t,T)}\}, \{q_1^{(2\Delta t,T)}, \ldots, q_i^{(2\Delta t,T)}\}, \ldots, \\
\{q_1^{((n-2)\Delta t,T)}, \ldots, q_i^{((n-2)\Delta t,T)}\}
\end{align*}
$$

The joints values $q_{ij}^{(\Delta t,l)}$ ($j = 1, \ldots, n-2; l = 1, \ldots, i$) are randomly initialized in the range $[-\pi, +\pi]$ rad. It should be noted that the initial and final configurations are not encoded into the string because they remain unchanged throughout the trajectory search. Without losing generality, for simplicity, it is adopted a normalized time of $\Delta t = 0.1$ s, because it is always possible to perform a time re-scaling.

2.2. Multi-objective genetic algorithm operators

The initial population is randomly generated. The search is then carried out among this population. Three different operators are used in the genetic planning: selection, crossover and mutation, as described in the sequel.

In what concerns the selection operator, the successive generations of new strings are reproduced in a similar way like the MOGA algorithm [15]. Initially, each solution of the population is assigned a fitness value, f, according to its rank [10]. To promote population diversity the well-known fitness sharing scheme [12] is used with a sharing radius of $\sigma_{\text{share}} = 0.01$ and exponential of $\alpha = 2$ (2a). In this algorithm the distance between two solutions is measured in the parameter space and the sharing is performed considering all the solutions independently of their rank in spite of performing the sharing just between population member with same rank, as proposed by [15]. The metric used, between solutions s and k, is the Euclidian distance evaluated by Eq. (2b). The final fitness function are then given by Eq. (2d):

$$
\begin{align*}
\text{sh}(d_{sk}) = \begin{cases}
1 - \left(\frac{d_{sk}}{\sigma_{\text{share}}}\right)^{\alpha} & \text{if } d_{sk} \leq \sigma_{\text{share}} \\
0 & \text{otherwise}
\end{cases} & (2a) \\
&
\end{align*}
$$

$$
\begin{align*}
d_{sk} = \sqrt{\sum_{j=1}^{n} \left(\frac{q_j - q_j^{\text{max}}}{q_j^{\text{max}} - q_j^{\text{min}}}\right)^2} & (2b) \\
&
\end{align*}
$$

$$
\begin{align*}
\text{nc}_x = \sum_{k=1}^{n_{\text{pop}} \cdot n_{\text{crossover}}} \text{sh}(d_{sk}) & (2c) \\
&
\end{align*}
$$

$$
\begin{align*}
f' = \frac{f}{\text{nc}_x} & (2d) \\
&
\end{align*}
$$

The simulated binary crossover (SBX) [12] operator is used with a probability $p_c = 0.6$. The mutation operator replaces one gene value with probability $p_m = 0.05$ using the Eq. (3), at generation T, where $N(\mu, \sigma)$ is the normal distribution function with average μ and standard deviation σ.

$$
q_i^{(\Delta t,T+1)} = q_i^{(\Delta t,T)} + N(0, 1/\sqrt{2\pi}) & (3) \\
$$

2.3. Evolution criteria

Five indices $\{f_q, f_l, f_p, f_p, f_{\text{eva}}\}$ (4) are used to qualify the evolving trajectory robotic manipulators. These criteria are
The joint velocity function f_q is used to minimize the ripple in time evolution. The cartesian distance f_p (4c) minimizes the total arm trajectory length, from the initial point up to the final point, where p_j is the robot j intermediate arm cartesian position and $d(\cdot, \cdot)$ is a function that returns the distance between two arguments. The cartesian velocity $f_\dot{p}$ (4d) is responsible for reducing the ripple in arm time evolution. Finally, the energy f_{Ea} in expression (4e), where τ_j reports the robot joint torques, is computed assuming that power regeneration is not available by motors doing negative work, that is, by taking the absolute value of the power [16].

3. Simulation results

In this section results of various experiments are presented. In this line of thought, subsections 3.1 and 3.2 present the trajectory optimization for 2R and 3R robots respectively, using two objectives (2D). Subsection 3.3 shows the results of a five dimensional (5D) optimization for a 2R robot. Finally, subsection 3.4 presents the results of a 5D optimization for a 3R robot in a workspace with an obstacle.

3.1. 2R Robot trajectory with 2D optimization

The first experiment consists on moving a 2R robotic arm from the starting configuration, defined by the joint coordinates $A \equiv \{-1.149, 1.808\}$ rad, up to the final configuration, defined by $B \equiv \{1.181, 1.466\}$ rad, in a workspace without obstacles. The optimization objectives considered in this section are the joint velocity f_q (4b) and the cartesian velocity f_p (4d).

The simulations results achieved by the algorithm, with $n = 9$ configurations, $T_i = 15,000$ generations and $pop_{size} = 300$, converge to two optimal fronts. One of the fronts (Fig. 2(a)) corresponds to the movement of the manipulator around its base in the counterclockwise direction. The other front (Fig. 2(b)) is obtained when the manipulator moves in the clockwise direction. The solutions a and b, shown in Fig. 2 represents the best solution found for the f_q and f_p objectives, respectively.

In this simulation study, the MOEA was executed 21 times in order to study the Pareto optimal convergence. In 66.6% of the 21 total number of runs, the Pareto optimal front was found. In minimized by the planner to find the optimal Pareto front. Before evaluating any solution, in order to remove virtual jumps, all the values such that $|q_j^{(i+1)T} - q_j^{iT}| > \pi$ are readjusted, adding or removing a multiple value of 2π, in the strings:

$$f_q = \frac{n}{\Delta T} \sum_{i=1}^{n} (\dot{q}_j^{iT})^2$$ (4a)

$$f_q = \frac{n}{\Delta T} \sum_{i=1}^{n} (\dot{q}_j^{iT})^2$$ (4b)

$$f_p = \sum_{j=2}^{n} d(p_j, p_{j-1})^2$$ (4c)

$$f_p = \sum_{j=2}^{n} d(p_j, p_{j-1}) - d(p_{j-1}, p_{j-2})^2$$ (4d)

$$f_{Ea} = (n - 1) \Delta \tau_a = \sum_{i=1}^{n} \sum_{j=1}^{n} |\tau_j \cdot \Delta q_j^{iT}|$$ (4e)

The joint distance f_q (4a) is used to minimize the manipulator joints traveling distance. In fact, for a function $y = g(x)$ the curve length is defined by Eq. (5) and, consequently, to minimize the curve length distance the simplified expression (6) is adopted:

$$\int \left[1 + \left(\frac{dg}{dx} \right)^2 \right] dx$$ (5)

$$\int \left(\frac{dg}{dx} \right)^2 dx = \int g^2 dx$$ (6)

The joint velocity function f_q is used to minimize the curve length distance the simplified expression (6) is adopted.
all simulations, for both cases, the solutions converged to a front type, which can be modeled by the following equation (κ, α, β):

$$f_p(f_q) = \kappa \frac{f_q + \alpha}{f_q + \beta}$$

(7)

The achieved median, average and standard deviation for the parameters κ, α and β of (7) are shown in Table 1, both for the Pareto optimal and local fronts. From these values it can be concluded that the algorithm converges always for one of the fronts. Furthermore, the variation for each type of front is small, as it can be verified by the achieved standard deviation values.

To study the spread of the fronts the length of the approximating functions are measured. This length is evaluated considering the two extreme solutions of the front {a, b}. Therefore, the length is evaluated between the two points of the modeled function whose distance is the smaller to front points a and b, respectively. Table 1 also shows the experiments length median, average and standard deviation. The front length variation is not as small as desirable. Further refinements to the proposed technique are under consideration.

To study the solution front diversity, the approximated front was split into several intervals, limited by normal straight lines r_m (Fig. 3), such that the front curve length is equal for all intervals. Any two consecutive normal straight lines have an associated interval I_m ($m = 1, \ldots , 19$), and the solutions located between these lines are counted. Fig. 4

![Figure 3](image3.png)

Fig. 3. Normal straight lines to the front obtained with $f_p(f_q)$ function.

![Figure 4](image4.png)

Fig. 4. Solution distribution statistics for the 2R robot.

![Figure 5](image5.png)

Fig. 5. Successive 2R robot configurations. (a) Solution, a, with the best performance for joint velocity (f_q) objective and (b) solution, b, with the best performance for cartesian velocity (f_p) objective.
shows the solution distribution statistics achieved by all simulation runs. In this chart, non-dominated and dominated solutions are represented, namely its average and its standard deviation. From the chart, it can be seen that the solutions are distributed in all intervals. However, the distribution is not uniform. This is due to the use of a sharing function in the attribute domain in spite of the objective domain. Moreover, the algorithm does not incorporate any mechanism to promote the development of well-distributed solutions in the objective domain.

The results obtained for solutions a and b, of the Pareto optimal front in Fig. 2(a), are presented in Figs. 5 and 6. The comparison of Figs. 5 and 6(a) with Figs. 5 and 6(b), makes clear that the joint/cartesian time evolution for the optimal solutions a and b, respectively, is significantly different due to the objective adopted. Between these extreme optimal solutions several others were found, that have an intermediate behavior.

![Fig. 6. Joint time evolution vs. time for the 2R robot. (a) Solution, a, with the best performance for joint velocity (f_η) objective and (b) solution, b, with the best performance for cartesian velocity (f_ν) objective.](image)

![Fig. 7. Pareto optimal fronts, angular distance vs. cartesian distance optimization: $f_1 = ab$ (workspace without obstacles); $f_2 = cd$ (workspace with one obstacle).](image)

![Fig. 8. Successive 3R robot configurations. (a) Solution a and (b) solution c.](image)

![Fig. 9. Joint position of trajectory vs. time for the 3R robot. (a) Solution a and (b) solution c.](image)
Fig. 10. Value path method representation of f_q, f_q, f_{Ea}, f_p and f_r objectives. (a) Population tradeoffs and (b) best solution tradeoffs.

Fig. 11. Behavior of the best solutions obtained for the 2R robot with 5D optimization. (a) Joint 1 position vs. time, (b) joint 2 position vs. time, (c) joint 1 time evolution vs. time, (d) joint 2 time evolution vs. time, (e) cartesian movement, (f) cartesian time evolution, (g) joint 1 energy required and (h) joint 2 energy required.
and which can be selected according with the importance of each objective.

3.2. 3R Robot trajectory with 2D optimization

In this subsection a 3R robot trajectory is optimized using the objectives \(f_q \) (4a) and \(f_p \) (4c) in a workspace which may include a circle obstacle with center at \((x, y) = (2, 2)\) and radius \(\rho = 1 \). The initial and final configurations are \(A = \{-1.15, 1.81, -0.50\} \) rad and \(B = \{1.18, 1.47, 0.50\} \) rad, respectively. The \(T_t \) and \(\text{pop_size} \) parameters used are identical to those adopted in the previous subsection. The trajectories, which collide with the obstacle are assigned a very high fitness value, in order to be eliminated in the evolution.

For an optimization without any obstacle in the workspace the \(f_2 = ad \) front (Fig. 7) is obtained. However, when the obstacle is introduced the front is reduced to the \(f_1 = cd \). Thus, only the performance of \(f_q \) objective is affected because no longer is possible to obtain so small values as previous case (Figs. 8 and 9). Solutions \{a, b\} and \{c, d\} represent the solutions which have the best performance for the objectives \(f_q, f_p \) with the 3R manipulator without and with obstacles, respectively.

3.3. 2R Robot trajectory with 5D optimization

Here, the 2R manipulator trajectory is optimized considering simultaneously five objectives described by Eq. (4). Figs. 10 and 11 show the optimization results achieved with \(T_t = 50,000 \) generations and \(\text{pop_size} = 1000 \).

Fig. 10(a) shows the final non-dominated solutions found in one run. The horizontal axis marks the identity of the objective functions. The vertical axis represents the normalized objective values. Non-normalized maximum and minimum values archived in the simulation can be seen in Table 2. The 5D algorithm did not attain solutions as good as the 2D algorithm due to the significant increase in the search complexity; nevertheless, the solutions have a good distribution (Fig. 10(a)) with values near to the ones obtained for the 2D corresponding simulation. The good distribution can be observed in Fig. 10(a) by the solution spread achieved in vertical direction over each objective mark \((f_q, f_q, f_{E_a}, f_p, f_p)\).

Table 2

<table>
<thead>
<tr>
<th>(f_q) (rad^2/s^2)</th>
<th>(f_q) (rad^4/s^4)</th>
<th>(f_{E_a}) (J)</th>
<th>(f_p) (m^2/s^2)</th>
<th>(f_p) (m^4/s^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 79.8</td>
<td>18.2</td>
<td>1056.7</td>
<td>83.5</td>
<td>15.0</td>
</tr>
<tr>
<td>Maximum 182.3</td>
<td>101.7</td>
<td>4602.7</td>
<td>121.8</td>
<td>56.4</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>(f_q) (rad^2/s^2)</th>
<th>(f_q) (rad^4/s^4)</th>
<th>(f_{E_a}) (J)</th>
<th>(f_p) (m^2/s^2)</th>
<th>(f_p) (m^4/s^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 155.1</td>
<td>52.8</td>
<td>446.9</td>
<td>74.4</td>
<td>12.9</td>
</tr>
<tr>
<td>Maximum 638.0</td>
<td>731.9</td>
<td>20531.3</td>
<td>337.3</td>
<td>108.3</td>
</tr>
</tbody>
</table>

Fig. 10(b) shows the solutions \(s_i = \{s_1, s_2, s_3, s_4, s_5\} \) which have the best performance for each objective \(O_i = \{f_q, f_q, f_{E_a}, f_p, f_p\} \). From Fig. 10(b) it can be concluded that \(f_q \) and \(f_q \), or \(f_p \) and \(f_p \), are conflicting objectives with a relative low tradeoff between them (extent \(f_q f_q \) and \(f_p f_p \) of \(s_i \), \(s_i \) and \(s_i \), respectively). On the other hand, the \(f_{E_a} \) objective presents the highest tradeoff among the others objectives. Fig. 11 shows the best solution, \(s_i \), obtained for each objective \(i = \{1, \ldots, 5\} \). For the studied trajectory, the results indicate that as the manipulator moves near to its basis the energy consumed is lower (Fig. 11(e), (g) and h).

3.4. 3R Robot trajectory with 5D optimization

In this subsection, a 3R manipulator trajectory is optimized considering the five objectives described by Eq. (4) and one obstacle with center \(c = (1, 0.4) \) and radius \(\rho = 0.4 \). The manipulator has a link length of \(l_i = 0.67 \) m and weight of \(m_i = 0.67 \) kg, \(i = \{1, \ldots, 3\} \). The starting and final configurations are \(A = \{-1.374, 1.129, 1.129\} \) and \(B = \{1.05, 0.909, 0.909\} \), respectively. Table 3 contains the objective range values achieved by the 3R manipulator in a single run. Fig. 12(a) and (b) shows the optimization results achieved with \(T_t = 50,000 \) generations and \(\text{pop_size} = 1000 \). From Fig. 12(b) it can be confirmed that the objectives are quarrelsome. However, the relative tradeoffs between them have changed.
Fig. 13 presents the best solutions for each objective. The great part of them are obtained when the manipulator travels in the counterclockwise direction. However, the solution with lower $f_\dot{q}$ is obtained in a clockwise direction.

4. Summary and conclusions

A multi-objective genetic algorithm robot trajectory planner, based on the kinematics approach, was proposed. The multi-objective genetic algorithm is able to reach optimal solutions regarding the optimization of multiple objectives. Simulation results were presented considering the optimization of two and five simultaneous objectives. The results obtained indicate that obstacles in the workspace may interfere in the Pareto front. For the studied cases the single obstacle considered does not represent a significant difficulty for the algorithm to reach optimal solutions. Furthermore, the algorithm determines the non-dominated front maintaining a good spread and distribution of solutions along the Pareto front. The relative tradeoffs between the objectives change according with the robot and the workspace under evaluation.

Acknowledgment

This paper is partially supported by the grant Prodep III (2/5.3/2001) from FSE.

References

