Evolutionary Optimization Under Uncertainty: The Strategies to Handle Large-Scale Energy Resource Management Problems in Smart Grids

Haoxiang Qin¹, WenLei Bai^{2/5}, Yi Xiang¹, Fangqing Liu¹, Yuyan Han³, Ling Wang⁴, Kwang Y. Lee⁵

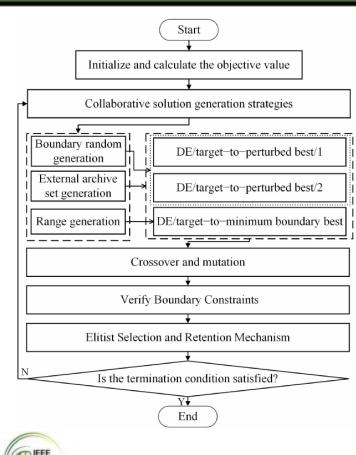
1. South China University of Technology 2. Oracle America Inc 3. Liaocheng University

4. Tsinghua University 5. Baylor University

Motivation

The ideas of single individual outstanding algorithms used to solve discrete problems are also applicable to the energy field [1]. For example, Iterative greedy (IG) algorithm for solving flow-shop scheduling problems [2, 3]. Moreover, the DE strategy provided by the competition is also very useful in perturbing solutions and adjusting values [4]. In addition, the strategy of Ring Cellular Encode Decode UMDA is also effective [5]. In spired by above algorithms, we proposed a Self-adaptive Collaborative Differential Evolutionary Algorithm (SADEA) to solve the ERM problem.

[1] H. X. Qin, Y. Y. Han, B. Zhang, L. L. Meng, Y. P. Liu, Q. K. Pan, and D. W. Gong, "An improved iterated greedy algorithm for the energyefficient blocking hybrid flow shop scheduling problem," Swarm and Evolutionary Computation, no. 69-, p. 69, 2022.
[2] H. X. Qin, Y. Y. Han, Q. D. Chen, L. Wang, Y. T. Wang, J. Q. Li, and Y. P. Liu, Energy-efficient iterative greedy algorithm for the distributed hybrid flow shop scheduling with blocking constraints, IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1– 16, 2023.
[3] H. X. Qin, Y. Y. Han, Y. T. Wang, Y. P. Liu, J. Q. Li, and Q. K. Pan, Intelligent optimization under blocking constraints: A novel iterated greedy algorithm for the hybrid flow shop group scheduling problem, Knowledge-Based Systems, vol. 258, p. 109962, 2022.


[4] F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, A new hybridadaptive differential evolution for a smart grid application under uncertainty, in 2018 IEEE Congress on Evolutionary Computation (CEC), 2018.

[5] Rodríguez-González, A. Y., Aranda, R., Álvarez-Carmona, M.Á., Martínez-López, Y., Quintana, J. M. (2022, July). Applying Ring Cellular Encode-Decode UMDA to Risk-based Energy Scheduling. In Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion. doi: 10.1145/3520304.3534055.

Power & Energy Society

The flowchart shows the overall framework of the SADEA algorithm, which consists of the following main parts:

- 1. The generation method of collaborative solutions (depending on the stage);
- 2. DE search strategies;
- 3. The crossover and mutation strategy;
- 4. The boundary validation;
- 5. The elite selection and retention mechanism.

THANK YOU

