

Guidelines for WCCI(CEC)/GECCO 2024 Competition
Evolutionary Computation in the Energy Domain: Optimal PV

System Allocation

João Soares, Fernando Lezama, José Almeida, Bruno Canizes, Zita Vale

School of engineering (ISEP), Polytechnic of Porto, Porto, Portugal

flz@isep.ipp.pt, jan@isep.ipp.pt, jorga@isep.ipp.pt, bmc@isep.ipp.pt, zav@isep.ipp.pt

Wenlei Bai

Oracle America Inc., Austin, TX, USA

baiwenlei123@gmail.com

Kwang Y. Lee

Baylor University, Waco, TX, USA

Kwang_Y_Lee@baylor.edu

IEEE CIS Task Force on 'Computational Intelligence in the Energy Domain (ci4energy), part of

IEEE CIS Intelligent Systems Applications TC (https://www.gecad.isep.ipp.pt/ci4energy/)

IEEE PES Intelligent Systems Subcommittee (ISS), part of IEEE PES Analytic Methods for Power Systems

TC (http://sites.ieee.org/pes-iss/)

IEEE PES Working Group on Modern Heuristic Optimization (https://site.ieee.org/psace-mho/)

January 2024

mailto:flz@isep.ipp.pt
mailto:jan@isep.ipp.pt
mailto:bmc@isep.ipp.pt
mailto:zav@isep.ipp.pt
http://sites.ieee.org/pes-iss/

Table of contents

1. Introduction .. 4

2. General description of the optimal PV allocation problem .. 5

3. Metaheuristic simulator framework .. 5

3.A) Encoding of the individual ... 7

3.B) Fitness function .. 7

3.C) Scenario overview .. 8

4. Guidelines for participants ... 9

4.A) main.m - Master function/script ... 9

A.0 and A.1 - # main.m - Loading the testbed and case study .. 10

A.2 - #DEparameters.m - Set parameters of the metaheuristic .. 10

A.3 - #setOtherParameters.m - Set other necessary parameters and struct 11

A.4 - #setVariablesBounds.m - Set bounds of variables .. 11

A.5 - #HyDE.m - Algorithm proposed by the competitor ... 11

A.6 - #Save_results.m - Benchmark results (text-files) .. 12

4.B) Fitness function evaluation .. 12

5. Evaluation guidelines ... 14

6. Material to be submitted to the organizers .. 14

Appendix: Mathematical formulation ... 15

Bibliography .. 17

1. Introduction
Following the success of the previous editions at PES GM (2017,2021), GECCO (since 2018 to 2023), WCCI

and CEC (since 2017 to 2023)1, we are launching a new edition of our algorithm competition at major

conferences in the field of computational intelligence. This WCCI/GECCO 2024 competition proposes one

track in the energy domain:

Track 1) Optimal PV systems allocation in an unbalanced distribution network. As photovoltaic (PV)

penetration into distribution networks continues to grow, the transition from passive to active networks

has brought about a new level of complexity in terms of planning and operation. The optimal PV allocation

(sizing and location) is challenging because it is mixed-integer non-linear programming with three-phase

non-linear unbalanced power flow equations. The objective is to find the optimal PV systems allocation

that maximizes the PV penetration within a predefined planning horizon while satisfying operation

constraints such as voltage and line limits. The IEEE 37-bus test feeder was used for a case study.

The proposed track (testbed) is developed under the same framework as the past competitions with few

adjustments.

Important: The use of the software platform is prohibited for purposes other than competition without

a prior warning to the organizing team.

Tip: The most important part for a quick participation in this competition is section 4 of this guideline, i.e.,

if you want to just implement your heuristic and treat the problem as pure black box item. Former sections

(2-3) are introduction and explanation of the problem being optimized.

1 Check former competitions in http://www.gecad.isep.ipp.pt/ERM-Competitions

http://www.gecad.isep.ipp.pt/ERM-Competitions

2. General description of the optimal PV allocation problem
Figure 1 illustrates an overview of high PV system penetration into an unbalanced distribution network. It indicates

that there are MW-scale, commercial, and residential types of PV systems, and the power flow becomes bidirectional

after large PV penetration. Bidirectional power flow certainly increases the complexity for system operators, but

what’s more concerning is the voltage issue introduced by PV. During the heavy loading period, PV penetration

normally helps improve the voltage profile because voltage under heavy load is near or even lower than low voltage

limits. By penetrating PV, the voltage will be boosted to the acceptable range. Yet, during light loading and high PV

penetration time, such as noon time, voltages are likely to be boosted above the high limit, which causes damage to

the system. Therefore, the PV allocation problem is to find the optimal location and sizing of PV systems to optimize

objectives such as maximizing PV power injection for all node voltages and subjected to certain equality and inequality

constraints.

In this testbed, we assume that the load condition and PV system output are deterministic and known. Summarizing,

the novelty of the proposed track can be described as follows:

• optimal PV systems allocation planning on an unbalanced three-phase distribution network to maximize

the PV system penetration and yet satisfy security constraints.

• the incorporation of a power flow algorithm, fixed-point iterative method developed by EPRI’s OpenDSS

[13], to solve unbalanced three-phase continuous power flow in a period efficiently thanks to its fast

convergence property.

• participants will implement solution methods based on modern metaheuristic optimization to deal with

the computational burden of the consideration of diverse possible scenarios of uncertain parameters and

the large number of variables considered.

• As a result, it is interesting to analyze the impact of various PV system models over a set of case studies

using realistic data in distribution network.

Figure 1 illustrates an overview of high PV system penetration into an unbalanced distribution network. The reader

can refer to the appendix section for more details of the formulation of optimal PV systems allocation.

Figure 1 Distribution network with high PV penetration

3. Metaheuristic simulator framework
In this competition, the method of choice used by the participants to solve the problem must be a metaheuristic-

based algorithm (e.g., Differential Evolution, Particle Swarm Optimization, Vortex Search, Hybrid approaches, etc.).

The framework adopted in the competition is described in this document and follows the structure presented in

Figure 2.

Figure 2 General framework of the simulation platform

The simulation platform has been implemented in MATLAB© 2023 64-bit and consists of different scripts with specific

targets in the simulation. As shown in Figure 2, some scripts correspond to encrypted files provided by the organizers

(blue color in the figure). The user only needs to implement two scripts (see Sect. 4.A.2 and Sect. 4.A.6), namely:

i. one script for setting the parameters required by their algorithm (A.2).

ii. a second script for the implementation of their proposed solution method (A.6).

Examples of how to implement these two script functions, and how the organizer’s scripts work on the platform, are

provided in Sect. 4.

A maximum number of 5,000 function evaluations allowed in the competition. Take into account that one function

evaluation corresponds to each time that one solution is evaluated in the fitness (this is not the same as algorithm

iterations).

(only 1 in 2024)

3.A) Encoding of the individual

One fundamental aspect of population-based algorithms is the encoding of the solutions. Depending on the problem,
particles/vectors must contain all the information associated with a solution and should be evaluated in a fitness
function in order to measure their performance.

The initial solutions should be initialized randomly between the upper and lower bounds of the variables. Heuristics

and special tweaks for initial solutions are not accepted.

The solution structure (e.g., an individual in DE, a particle in PSO, or genotype in GA) is a fundamental part of the

metaheuristics to represent a given solution. The solution representation for testbed 1 competition follows the vector

representation showed in Figure 3.

Figure 3 Solution representation in track 1

The control variables consist of location as discrete variable and size as continuous variable. For example, if there is
only 1 PV system, then there are only 2 control variables (1 location + 1 size). Thus, the total control variables equal
to the number of PV systems n x 2. Note that this is considered as a planning problem considering the 24-hour period,
and since it’s not an operational problem, therefore the location and size PV systems will not change for 24 hours
operational time, which makes sense. In future work, a longer period of time such as 1 year should be considered in
the planning.

3.B) Fitness function

A maximum number of 5,000 function evaluations are allowed in the competition. Notice that the participant can

consider the problem as a black box, in which each solution evaluated in the fitness function has a single cost

associated to it, as showed in Figure

Figure 4 Fitness function as black box.

For participants that want more details on the design of the fitness function for testbed 1, please be referred to the
appendix, and take the following explanation into account. Fitness values are obtained via evaluating solution vectors
from the objective function (1). The process is straightforward. Initially, the load profile, PV forecast, and network
data were loaded, and the objective is to maximize the PV system penetration (minimize the negative penetration).


= =

−=
24

1 1

1

t

n

i

PVi

PV

pf

(1)

where vi and pPVi are the bus voltage, and the real power injection at PV node i respectively; npv is the number of PV
systems, n is the total number of nodes. Participants’ algorithms will be tested on IEEE-37 bus distribution network
system and the average fitness value will be calculated via certain scheme described in section 5.

3.C) Scenario overview

Participants’ algorithms will be tested on an IEEE 37 bus system as shown in Fig. 5, the potential buses to interconnect

three-phase PV systems are {701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 720, 722, 724,

725, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 744} because they are three-phase

bus, and the possible size is from 2,000 – 20,000 kVA. The objective is to find the optimal location and sizing of one

PV systems, while verifying voltage variations over one day. Note that there is a total of 117 node voltages for the

IEEE-37 bus unbalanced three-phase distribution network, because each bus can have multiple nodes.

799

701

703

730

728

744 727

714

713 704

712

742
705

702

718
729

706

725

722
707

720

724

709
731

708
732

733

734

736

710

735
737 738 711

740

741

775

Figure 5 IEEE 37 bus test system.

NOTE: For this case study the installation of OpenDSS1 is needed (download the file highlighted in Figure 6). The

installation process is provided in the competition platform (see README.txt for the download and installation

process).

1https://sourceforge.net/projects/electricdss/

Figure 6 Website for OpenDSS download

4. Guidelines for participants
These instructions include as example the metaheuristic hybrid-adaptive differential evolution (HyDE) [11]

implemented and adapted to the present framework (It has been modified by GECAD).

It is important that the participants use the following recommendations and structure to avoid issues in using the

supplied datasets and codes.

4.A) main.m - Master function/script
main.m is the main file for the competition. The competitors can modify this main script as needed. Nevertheless,
it is worth noting that this main script is ready to use. Participants should only include their functions to perform the
optimization of the problem.

main.m

……
%%
%%
%% Select testbed
Select_testbed=1; %Only 1 track in 2024
%Testbed 1: Optimal PV system allocation

DB=Select_testbed;
% 1: Case study testbed 1

[caseStudyData, DB_name]=callDatabase(DB);

Select_Algorithm=1;
%1: HyDE algorithm (test algorithm)
%2: Your algorithm
algorithm='HyDE'; %'The participants should include their algorithm here'

DEparameters %Function defined by the participant

A
.2

A

.0

A
.1

No_solutions=deParameters.I_NP; % %Notice that some algorithms are limited to one individual
%%
%%%
%% Set other parameters
otherParameters =setOtherParameters(caseStudyData,No_solutions, Select_testbed);

%%
%%%
%% Set lower/upper bounds of variables
[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters);

%%
%%%
%% Call the MH for optimization
ResDB=struc([]);
 for iRuns=1:noRuns %Number of trails
 tOpt=tic;
 rand('state',sum(noRuns*100*clock))% ensure stochastic indpt trials

 otherParameters.iRuns=iRuns;
 switch Select_Algorithm
 case 1
 [ResDB(iRuns).Fit_and_p, ...
 ResDB(iRuns).sol, ...
 ResDB(iRuns).fitVector]= ...
deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB);
….
 end

%%
%%%
 %% Save the results and stats
 Save_results

…..

As it can be seen, the main script follows the structure from Figure 2 (Sect. 3). Details in the implementation of each
part of the code are given next.

A.0 and A.1 - # main.m - Loading the testbed and case study
main– This is the main framework file where you can select the testbed, which will load the caseStudyData struct
(callDatabase.p – encrypted) with all the relevant dataset information depending on the selected testbed. Participants
do not need to worry about the content of the case study and loading the files.

%%
%%
Select_testbed=1;
%Testbed 1: Optimal PV system allocation
%% Load Data base
noRuns=10; %this can be changed but final results should be based on 10 trials
DB=Select_testbed;
% 1: Case study testbed 1
[caseStudyData, DB_name]=callDatabase(DB);

A.2 - #DEparameters.m - Set parameters of the metaheuristic
DEparameters.m file – This function file must be specific to the metaheuristic implemented by the participant. This
is just an example using DE to show how participants should implement this function with all the parameters related
to their algorithm.

deParameters.I_NP= 10; % Size of the population in DE
deParameters.F_weight= 0.3; %Mutation factor
deParameters.F_CR= 0.5; %Recombination constant
deParameters.I_itermax= 500; % number of max iterations/gen
deParameters.I_strategy = 1; %DE strategy

A
.6

A

.3

A
.4

A
.5

deParameters.I_bnd_constr = 1; %Using bound constraints
% 1 repair to the lower or upper violated bound
% 2 rand value in the allowed range
% 3 bounce back

A.3 - #setOtherParameters.m - Set other necessary parameters and struct
setOtherParameters.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It
just sets parameters and data needed for the fitness function to work. Please take into account a third parameter is
added to the previous framework to consider another track. It is a mandatory function that creates a struct
“otherParameters” and should be run as illustrated in main function section:

%% Set other parameters
otherParameters =setOtherParameters(caseStudyData,No_solutions, Select_testbed);

Participants must pass the “otherParameters” struct as argument to the functions:

[lowerBounds,upperBounds]= ... setVariablesBounds(caseStudyData,otherParameters, Select_testbed);
…..
[ResDB(iRuns).Fit_and_p, ...
 ResDB(iRuns).sol, ...
 ResDB(iRuns).fitVector]= ... HyDE(deParameters,caseStudyData,otherParameters,lowerB,upperB);

A.4 - #setVariablesBounds.m - Set bounds of variables
setVariablesBounds.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It
just sets the bounds of the problem variables. Please take into account a third parameter is added to the previous
framework to consider another track.

%% Set lower/upper bounds of variables
[lowerBounds,upperBounds]= ... setVariablesBounds(caseStudyData,otherParameters,Select_testbed);

The outputs of this function “[lowerBounds,upperBounds]” – should be used by your algorithm to generate the initial
solutions and to validate if the bounds are being respected in each iteration.

The order of the variables in the implemented codes cannot be modify for the proper functioning of the fitness
function. The structure of the solution is indicated in Sect. 3.A of this document.

A.5 - #HyDE.m - Algorithm proposed by the competitor
The participants should generate a scrip called #MHalgorithm.m or similar. This algorithm should replace #HyDE.m

which is provided as example:

[ResDB(iRuns).Fit_and_p, ...
 ResDB(iRuns).sol, ...
 ResDB(iRuns).fitVector]= ... HyDE(deParameters,caseStudyData,otherParameters,lowerB,upperB);

Your metaheuristic should receive as input parameters:

1. deParameters: struct with the parameters configuration for your algorithm to work (it is generated by the user)

2. caseStudyData: struct with the information of the case study

3. otherParameters: struct with additional information required by the fitness function

4. lowerB/upperB: lower and upper bounds of variables

Your metaheuristic code should return to the main script the following variables:

1. ResDB(iRuns).fit_and_p: array of size 1x2 with the best fitness and penalties values

2. ResDB(iRuns).sol: vector of size: 1 x noVariables with the best candidate solution found by your algorithm

3. ResDB(iRuns).fitVector: array of size: 2xnoIterations with the value of the fitness and penalties over the

iterations.

The participants are encouraged to save the results of each trial/run in a struct “ResDB”, as shown in the example.

That will ease the evaluation process by the organizers.

A.6 - #Save_results.m - Benchmark results (text-files)
#Save_results.m (encrypted) – The output is written to text-files using this script. The following tables should be

produced:

Table 1. Table_Time: Computing time spent for all optimization trials (X_benchmark_Time_T1.txt)

 timeSpent (s)

Run1
Run2
Run3
…
Run10

Table 2. Table_Fitness: Individual benchmark of the fitness in each iteration (X_benchmark_FitnessVector_T1.txt)

 Fitness

Run1

Run2

Run3

…

Run10

Table 3. Table_Results: Individual benchmark of each of the trials (X_benchmark_Results_T1.txt)

 OF Penalties ConvergenceRate

Run1
Run2
Run3
…
Run10

Table 5. Table_TrialStats: Summary statistics or the trials (X_benchmark_Summary_T1.txt)

Ranking
Index

Standard
deviation

Minimum Maximum Variance
Average
time

Code

RankingIndex PstdOF PminOF PmaxOF PvarOF AvgTime validationCode

In addition, this function should automatically generate the file “X_Send2Organizers_TX.mat”, which should include
the best solutions found in each of the trials. That file will be used to double-check the reported results by validating
all the solutions contained of the case study. For that reason, it is important that the participants put special care in
returning the best solutions from their algorithms and stored in “ResDB.sol” (see Sect. 4.A.6).

To clarify, the “X_send2Organizers_TX.mat” file will include a matrix called “solutions” with the solutions stored in
“ResDB.sol”. The solutions there will be evaluated according to Sect. 5 in order to double check the ranking index of
each participant. The lower the ranking index, the better the performance of a participant.

*A number 10 trials should be made.

*5,000 evaluations per trial for testbed 1.

4.B) Fitness function evaluation
fitnessFun_riskERM.m and #fitnessFun_transEP (encrypted) – this is the fitness function to be used by participants

and should be called as below. The “fnc” parameter will be assigned automatically to load the corresponding fitness

function according to the selected testbed Sect. 4.A.0.

[S_val, ~]=feval(fnc,FM_pop,caseStudyData,otherParameters);

The function receives as input:

1. fnc: string with the fitness function m file name: and “fitnessFun_riskERM.m”.

2. FM_pop: matrix of size 𝑁𝑠𝑜𝑙 × 𝐷, in which 𝑁𝑠𝑜𝑙 (rows) represents the number of individuals/solutions in an array,

and 𝐷 (columns) represents the dimension (i.e., number of variables) of the optimization problem. This variable

should be encoded in the metaheuristic algorithm proposed by participants (e.g., #MHalgorithm.m, Sect. 4.A.5).

Only 1 individual is also possible (one row).

3. caseStudyData: struct with data of the case study with the network data as loaded by callDatabase function (i.e.,

#callDatabase.m, Sect. 4.A.1).

4. otherParameters: Struct with additional information as loaded by #setOtherParameters.m Sect. 4.A.3).

The function returns as output:

1. 𝐒_𝐯𝐚𝐥: Matrix of size 𝑁𝑠𝑜𝑙 represents the number of individuals. This matrix includes the fitness values including

penalties of the solutions.

The #fitnessFun evaluates all the population (individuals) at once. A maximum number of 5,000 function evaluations

is set for this competition. The table below helps the participant to have an idea of the maximum number of iterations

and population It can set without surpassing the allowed number of evals. So, take it account when designing your

algorithm:

Table 7. Algorithm population/iterations limits

Size of the population Max. iterations Track 1

1 5,000

5 1,000

20 250

50 100

100 50

1000 5

5. Evaluation guidelines
A ranking index will be calculated using the 20 final solutions (one for each trial) provided by each participant. With

these solutions, the organizers will calculate the ranking index (𝑅𝐼𝑢𝑠𝑒𝑟) for each participant 𝑎 based on the average

fitness of solutions in this competition. The values 𝑅𝐼𝑢𝑠𝑒𝑟(𝑎)_𝑇1 will be normalized and a final ranking will be produced.

𝑅𝐼𝑢𝑠𝑒𝑟(𝑎)_𝑇1 =
1

𝑁𝑡𝑟𝑖𝑎𝑙𝑠
∙ [∑ (𝐹𝑖𝑡𝑎(𝑋⃗𝑖 𝑇1

))

𝑁𝑡𝑟𝑖𝑎𝑙𝑠

𝑖=1

]
(2)

where 𝐹𝑖𝑡𝑎(𝑋⃗𝑖_𝑇1) is a function that returns the fitness value of the solution found in trial 𝑖 (i.e., 𝑋⃗𝑖) by participant 𝑎

(See Sect. 3.B).

Therefore, the winner of the competition will be the one that gets the minimum value of 𝑅𝐼𝑢𝑠𝑒𝑟 (minimization

problems). The participants must consider this criterion while selecting the best search strategy in their algorithms.

6. Material to be submitted to the organizers
For the validation of the results, the 4 benchmark text files and the “send2Organizers_TX.mat” file produced by #

Save_results.m (see Sect. 4.A.6) should be submitted to the organizers. The implementation codes of each algorithm

entering the competition must also be submitted along with final results for full consideration in the evaluation. The

submitted codes will be used for further tests, which are intended to crosscheck the submitted results (Note: this

evaluation could consider the modification of the case study and number and the encoding of variables, so that

algorithms should be designed generally enough to handle different case studies of the same problem). The submitted

codes will be in the public domain and no intellectual property claims should be made.

Each participant is kindly requested to put the text files corresponding to final results, as well as the implementation

files (codes), obtained by using a specific optimizer, into a zipped folder named:

WCCI_GECCO2024_AlgorithmName_ParticipantName.zip

(e.g., WCCI_GECCO2024_DE_Lezama.zip).

The zipped folder must be summited to jan@isep.ipp.pt; flz@isep.ipp.pt, jorga@isep.ipp.pt

by 21th June 2024 (anywhere on Earth)

mailto:jan@isep.ipp.pt
mailto:flz@isep.ipp.pt
mailto:jorga@isep.ipp.pt

Appendix: Mathematical formulation

The optimal PV system allocation’s mathematical formulation is presented as follows [14].

)(min uf

(3)

0),,(yxug
(4)

0),,(=yxuh
(5)

where u is the control variable including PV locations and size, x is the state variable/dependent variable including

voltages and angles at each bus, y is the known network parameters such as network resistance, impendence, device

rating, etc. f(٠) is the objective function presented as follows.


= =

−=
24

1 1

1

t

n

i

PVi

PV

pf

(6)

where vi and pPVi are the bus voltage, and the real power injection at PV node i respectively; npv is the number of PV

systems, n is the total number of nodes, h(٠) is the equality constraints which is the power balance equation at each

node represented as:

jiYVVQ

YVVP

N

j

ijjiijjii

N

j

ijjiijjii

−−=

−−=





=

=

,)sin(

)cos(

1

1





(7)

where Pi, Qi are the real and reactive power at each node i, note unlike transmission network, each bus in distribution

network will have to include multiple nodes in the model to reflect the possible unbalanced power flow. In other

words, the size of equations increases significantly. Vi, Vj, δi and δj, are voltage magnitude and angle at node i, j; Yij

and θij are the Y-bus admittance matrix elements between node i and j. Equation (7) is a list of highly nonlinear

equations. g(٠) is the inequality constraints which include line flow limit, voltage limit, PV active power injection limit,

transformer tap limit, and generator output limit.

max,min, GiGiGi ppp 

(8)

max,min, iii ttt 

(9)

max,min, iii vvv 

(10)

max,LiLi ss 

(11)

max,min, pvpvipv ppp 

(12)

where (8) is the constraint for ith generator; (9) represents the ith transformer tapping limit; (10) is the voltage limit at

the ith node; (11) is the complex power flow limit at the ith line, and (12) represents the PV system capacity limits,

which are 2,000-20,000 kVA in this study.

Note that (12) is the control variable constraint, which is enforced within control variable feasible domain. The rest

of the equations are related with dependent variables and only violations from (10) are penalized to objective

functions if existing because (8), (9) and (11) are enforced when performing power flow calculation. The objective

function then becomes (13):

()
()

= 







−

−

+=
n

i

iiii

iiii

obj vvvv

vvvv

penff
1

min,

2

min,

max,

2

max,

otherwise 0

(13)

The following describes the fixed-point iterative method for solving unbalanced distribution load flow (DLF) shown in

Figure 7. The process is straightforward. We first use an initial guess of 𝐯0 (1.0 p.u.) to calculate 𝐢𝑖𝑛𝑗 and then calculate

the voltage iteratively until the algorithm converges (the difference in current and previous v is within a predefined

threshold). Figure 8 is the flow chart of the iterative method.

Figure 7 Fixed-point iterative method

nnY ninjsystemn ,...,2,1,0),(1

1 == −

+ viv

(14)

where 𝐢𝑖𝑛𝑗(𝐯) is the compensation or injection currents vector from power conversion elements (load, generator,

Vsource, Isource, storage, etc.) in the circuit, which may be nonlinear, not constant, and node voltages dependent; v

is the node voltage vector; 𝑌𝑠𝑦𝑠𝑡𝑒𝑚 is network admittance matrix composed of all elements’ primitive matrices 𝑌𝑝𝑟𝑖𝑚

as shown in Figure 9. n is the number of iterations. Note that most entries in I are zero, but for DERs and non-linear

voltage-dependent loads (such as constant power and constant current loads), the corresponding entries in I are non-

zero. The advantages of this DLF are: 1) 𝑌𝑠𝑦𝑠𝑡𝑒𝑚 remains constant if no network topology change. In other words, the

matrix inversion only needs to be done once during the iteration, which saves a lot of computation time. 2) The DLF

can take very unbalanced three-phase networks and converge successfully. 3) It’s also friendly to parallel sources

(mesh topology) networks as opposed to the radial network topology, which is required by the commonly used

backward/forward sweep method [12]. 4) it provides the option to run a long time series continuous load flow

efficiently thanks to the fast-solving feature.

Start

Initialize voltage vector
v0 = 1.0 0°

Given Vsource or Isource, fill in the
corresponding entries in iinj and set the

entries corresponding to loads and DERs 0.

Calculate vn+1 by (5) and calculate the
difference between vn : abs(vn+1 - vn)

Calculate Yprim and Ysystem

Calculate the adjusted injection
current for power conversion

elements such as DERs and loads by
(3) and put them into iinj

Convergence?
N

O
End

YES

Figure 8 Flow chart of the iterative method

Bibliography
[1] G. Mavromatidis, K. Orehounig, and J. Carmeliet, “A review of uncertainty characterisation

approaches for the optimal design of distributed energy systems,” Renew. Sustain. Energy
Rev., vol. 88, pp. 258–277, May 2018, doi: 10.1016/j.rser.2018.02.021.

[2] M. Tavakoli, F. Shokridehaki, M. Funsho Akorede, M. Marzband, I. Vechiu, and E.
Pouresmaeil, “CVaR-based energy management scheme for optimal resilience and
operational cost in commercial building microgrids,” Int. J. Electr. Power Energy Syst., vol.
100, pp. 1–9, Sep. 2018, doi: 10.1016/j.ijepes.2018.02.022.

[3] F. Samadi Gazijahani and J. Salehi, “Optimal Bilevel Model for Stochastic Risk-Based Planning
of Microgrids Under Uncertainty,” IEEE Trans. Ind. Inform., vol. 14, no. 7, pp. 3054–3064,
Jul. 2018, doi: 10.1109/TII.2017.2769656.

[4] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and Z. Vale, “Local Energy
Markets: Paving the Path Toward Fully Transactive Energy Systems,” IEEE Trans. Power Syst.,
vol. 34, no. 5, pp. 4081–4088, Sep. 2018, doi: 10.1109/TPWRS.2018.2833959.

[5] J. Soares, B. Canizes, M. A. Fotouhi Gazvhini, Z. Vale, and G. K. Venayagamoorthy, “Two-
stage Stochastic Model using Benders’ Decomposition for Large-scale Energy Resources
Management in Smart grids,” IEEE Trans. Ind. Appl., pp. 1–1, 2017, doi:
10.1109/TIA.2017.2723339.

[6] M. Rahmani, R. Romero, and M. J. Rider, “Strategies to Reduce the Number of Variables and
the Combinatorial Search Space of the Multistage Transmission Expansion Planning
Problem,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2164–2173, Aug. 2013, doi:
10.1109/TPWRS.2012.2223241.

[7] J. Almeida, J. Soares, F. Lezama, and Z. Vale, “Robust Energy Resource Management
incorporating Risk Analysis using Conditional Value-at-Risk,” IEEE Access, pp. 1–1, 2022, doi:
10.1109/ACCESS.2022.3147501.

[8] M. Esmaeeli, A. Kazemi, H. Shayanfar, G. Chicco, and P. Siano, “Risk-based planning of the
distribution network structure considering uncertainties in demand and cost of energy,”
Energy, vol. 119, pp. 578–587, Jan. 2017, doi: 10.1016/j.energy.2016.11.021.

[9] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MATPOWER: Steady-State
Operations, Planning, and Analysis Tools for Power Systems Research and Education,” IEEE
Trans. Power Syst., vol. 26, no. 1, pp. 12–19, Feb. 2011, doi: 10.1109/TPWRS.2010.2051168.

[10] B. Canizes, J. Soares, Z. Vale, and J. Corchado, “Optimal Distribution Grid Operation Using
DLMP-Based Pricing for Electric Vehicle Charging Infrastructure in a Smart City,” Energies,
vol. 12, no. 4, p. 686, Feb. 2019, doi: 10.3390/en12040686.

[11] F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, “A New Hybrid-Adaptive Differential
Evolution for a Smart Grid Application Under Uncertainty,” in 2018 IEEE Congress on
Evolutionary Computation (CEC), Rio de Janeiro, Jul. 2018, pp. 1–8. doi:
10.1109/CEC.2018.8477808.

[12] D. Gao, E. Muljadi, T. Tian, and M. Miller, "Software comparison for renewable energy
deployment in a distribution network," Technical Report, the National Renewable Energy
Laboratory (NREL), 2017.

[13] R. C., Dugan, and T. E. McDermott, "An open-source platform for collaborating on smart

grid research," 2011 IEEE PES General Meeting, Detroit, Michigan, U.S, July 24–28, 2011.

doi: 10.1109/PES.2011.6039829.

[14] W. Bai, W. Zhang, R. Allmendinger, I. Enyekwe, and K. Y. Lee, "A Comparative Study of

Optimal PV Allocation in a Distribution Network Using Evolutionary Algorithms," Energies,

vol. 17, no. 2, 2024, pp. 511 - 530, doi: https://doi.org/10.3390/en17020511.

https://doi.org/10.1109/PES.2011.6039829

