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Introduction

Energy Forecasting

Industry 4.0 & Industry 5.0

A technique that uses historical data as inputs to make
predictions of the future generation/consumption
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Historical Data Predictions

Energy Markets
» Challenge: means to store generated energy
> Goal of Energy Forecasting: balance between

consumption and generation
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» Industry 4.0: digital revolution of IT-driven

‘a4
I ! | aspects in industries

» Technology-driven: smart factories, cyber-
physical systems, decentralized self-

organization

» Industry 5.0: complement Industry 4.0

'% > Value-driven: sustainable, human-centric,

resilient European industry




Introduction

Research Target

» Matching energy prediction and Industry 4.0 & 5.0 aspects
» Incorporate energy forecasting:
» Raise awareness regarding security incidents

» Protect workers and physical/informational assets

» Two Energy Forecasting Based systems:

Energy
Prediction > Sets of machine learning models

Energy Energy
Forecasting Forecasting
Tool Analyzer

» Dynamic monitoring services (SaaS)
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Energy Forecasting Tool
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Energy Forecasting Tool

Historical Data File —;::;:F;-----------T-ram-'rlg_________________'

Choose the historical data file to be used for model training (please make sure that it has this structure).

HistoricalData-Consumption data josexds Browse
historicalData-Consumption_data_jose.xlsx Browse
Learning Algorithms.

Seec the algordhms you wart o be used,

toosethe appropriste parametrs
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Energy Forecasting Tool
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Goal:
» Monitoring assets and raise awareness of security incidents

Material and Methods

Data Industry shop floor
Set * Energy consumption livestream
e 10 sensors/analyzers

» Two analyzers:
» historical time window (3 months)
» predefined model: instantly trained and used to predict future samples

» future data samples (next 24 hours)
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Results and Discussion

Prediction accuracy R2 = 0.67

Profile Chart: Prediction Chart: > Predictions: close to the
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Energy Forecasting Analyzer
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» Part of integrated multi-domain system architecture
» Security and safety mechanisms for FoF
» Microservices architecture:

» Scalability, availability, and resilience of the

decentralized systems

Energy Forecasting \
Analyzer

Analyzing energy consumption to monitor
buildings and detect deficiencies over time

N
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Energy Forecasting Analyzer

E&
Energy Forecasting \
Sensors / Analyzers

Analyzer

f\ l Historical ‘ Q Monitor power consumption
«'ﬁ\ energy
f\ consumption IN Predict future energy records

records

f\ \ =%| Compare actual and predicted values
f\ \ A Generate forecasting-based alerts

Training Scanning
f{"‘\ Phase Phase

NG
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Energy Forecasting Analyzer

Training / Scanning
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& Input data

adapter
Sensors / Analyzers
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Training Phase A

1. Retrieving historical data (ex. 3 months)
2. Data preprocessing & aggregation

3. Training ML model

4. Model storage

Scanning Phase

1. Retrieving recent consumption (ex. last hour)
Loading trained model
Predicting expected consumption

Compare predicted and actual values

o> W

Generate and broadcast alerts
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Energy Forecasting Analyzer

AIert Sample

{
"trigger time": "2022-01-17T16:24:54.787484+00:00",
"processing time": "2022-01-17T16:24:54.997518+00:00",
"description": "Energy value exceeded the designated threshold during the last HOUR. Energy Value is: 13833 Predicted Value is:
11665.076923076924",
"analyzer":
"provider":
"training details": {
"start time": "2022-01-17T16:24:20.562542+00:00",
"end_time": "2022-01-17T16:24:22.381506+00:00",
"accuracy r2%: 0.8352024963776039,
"columns™: "[\"year\", \"month\", \"day\", \"hour\", \"target\"]",
"data rows num": 73,
"data columns num"™:
"estimator details": "AdaBoostRegressor()",
"validation details": "KFold(n splits=5, random state=None, shuffle=True)",
"aggregation window": "HOUR"
},
"scanning details": {
"start time": "2022-01-17T16:24:53.981535+00:00",
"end time": "2022-01-17T16:24:55.184482+00:00",
"prediction sample": "[2022, 1, 17, 15]",
"actual energy value": 13833.0,
"predicted energy value": 11
"diff energy value": 2167.923076923076,
"threshold energy value": 1000.0
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Thank You ...
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